Distal radius fracture strength has been quantified using in vitro biomechanical testing. These tests are frequently performed using one of two methods: (1) load is applied directly to the embedded isolated radius or (2) load is applied through the hand with the wrist joint intact. Fracture loads established using the isolated radius method are consistently 1.5 to 3 times greater than those for the intact wrist method. To address this discrepancy, a validated finite element modeling procedure was used to predict distal radius fracture strength for 22 female forearms under boundary conditions simulating the isolated radius and intact wrist method. Predicted fracture strength was highly correlated between methods (r = 0.94; p < 0.001); however, intact wrist simulations were characterized by significantly reduced cortical shell load carriage and increased stress and strain concentrations. These changes resulted in fracture strength values less than half those predicted for the isolated radius simulations (2274 ± 824 N for isolated radius, 1124 ± 375 N for intact wrist; p < 0.001). The isolated radius method underestimated the mechanical importance of the trabecular compartment compared to the more physiologically relevant intact wrist scenario. These differences should be borne in mind when interpreting the physiologic importance of mechanical testing and simulation results.

References

References
1.
Vogt
,
M. T.
Cauley
,
J. A.
Tomaino
,
M. M.
,
Stone
,
K.
,
Williams
,
J. R.
, and
Herndon
,
J. H.
, 2002, “
Distal Radius Fractures in Older Women: A 10-Year Follow-Up Study of Descriptive Characteristics and Risk Factors. the Study of Osteoporotic Fractures
,”
J. Am. Geriatr. Soc.
,
50
(
1
), pp.
97
103
.
2.
Ashe
,
M. C.
,
Khan
,
K. M.
,
Kontulainen
,
S. A.
,
Guy
,
P.
,
Liu
,
D.
,
Beck
,
T. J.
, and
McKay
,
H. A.
, 2006, “
Accuracy of pQCT for Evaluating the Aged Human Radius: An Ashing, Histomorphometry and Failure Load Investigation
,”
Osteoporos. Int.
,
17
(
8
), pp.
1241
1251
.
3.
Augat
,
P.
,
Reeb
,
H.
, and
Claes
,
L. E.
, 1996, “
Prediction of Fracture Load at Different Skeletal Sites by Geometric Properties of the Cortical Shell
,”
J. Bone Miner. Res.
,
11
(
9
), pp.
1356
1363
.
4.
Gdela
,
K.
,
Pietruszczak
,
S.
,
Lade
,
P. V.
, and
Tsopelas
,
P.
, 2008, “
On Colles’ Fracture: An Experimental Study Involving Structural and Material Testing
,”
J. Appl. Mech.
,
75
, p.
031002
.
5.
Muller
,
M. E.
,
Webber
,
C. E.
, and
Bouxsein
,
M. L.
, 2003, “
Predicting the Failure Load of the Distal Radius
,”
Osteoporos. Int.
,
14
(
4
), pp.
345
352
.
6.
Varga
,
P.
,
Baumbach
,
S.
,
Pahr
,
D.
, and
Zysset
,
P. K.
, 2009, “
Validation of an Anatomy Specific Finite Element Model of Colles’ Fracture
,”
J. Biomech.
,
42
(
11
), pp.
1726
1731
.
7.
Wu
,
C.
,
Hans
,
D.
,
He
,
Y.
,
Fan
,
B.
,
Njeh
,
C. F.
,
Augat
,
P.
,
Richards
,
J.
, and
Genant
,
H. K.
, 2000, “
Prediction of Bone Strength of Distal Forearm Using Radius Bone Mineral Density and Phalangeal Speed of Sound
,”
Bone
,
26
(
5
), pp.
529
533
.
8.
Lochmuller
,
E. M.
,
Lill
,
C. A.
,
Kuhn
,
V.
,
Schneider
,
E.
, and
Eckstein
,
F.
, 2002, “
Radius Bone Strength in Bending, Compression, and Falling and its Correlation With Clinical Densitometry at Multiple Sites
,”
J. Bone Miner. Res.
,
17
(
9
), pp.
1629
1638
.
9.
Eckstein
,
F.
,
Lochmuller
,
E. M.
,
Lill
,
C. A.
,
Kuhn
,
V.
,
Schneider
,
E.
,
Delling
,
G.
, and
Muller
,
R.
, 2002, “
Bone Strength at Clinically Relevant Sites Displays Substantial Heterogeneity and is Best Predicted From Site-Specific Bone Densitometry
,”
J. Bone Miner. Res.
,
17
(
1
), pp.
162
171
.
10.
Lochmuller
,
E. M.
,
Kristin
,
J.
,
Matsuura
,
M.
,
Kuhn
,
V.
,
Hudelmaier
,
M.
,
Link
,
T. M.
, and
Eckstein
,
F.
, 2008, “
Measurement of Trabecular Bone Microstructure Does Not Improve Prediction of Mechanical Failure Loads at the Distal Radius Compared With Bone Mass Alone
,”
Calcif. Tissue Int.
,
83
(
4
), pp.
293
299
.
11.
Mueller
,
T. L.
,
van Lenthe
,
G. H.
,
Stauber
,
M.
,
Gratzke
,
C.
,
Eckstein
,
F.
, and
Muller
,
R.
, 2009, “
Regional, Age and Gender Differences in Architectural Measures of Bone Quality and Their Correlation to Bone Mechanical Competence in the Human Radius of an Elderly Population
,”
Bone
,
45
(
5
), pp.
882
891
.
12.
Myers
,
E. R.
,
Hecker
,
A. T.
,
Rooks
,
D. S.
,
Hipp
,
J. A.
, and
Hayes
,
W. C.
, 1993, “
Geometric Variables From DXA of the Radius Predict Forearm Fracture Load InVitro
,”
Calcif. Tissue Int.
,
52
, pp.
199
204
.
13.
Pistoia
,
W.
,
van Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Lill
,
C. A.
,
Eckstein
,
F.
, and
Ruegsegger
,
P.
, 2002, “
Estimation of Distal Radius Failure Load With Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone
,
30
(
6
), pp.
842
848
.
14.
Spadaro
,
J. A.
,
Werner
,
F. W.
,
Brenner
,
R. A.
,
Fortino
,
M. D.
,
Fay
,
L. A.
, and
Edwards
,
W. T.
, 1994, “
Cortical and Trabecular Bone Contribute Strength to the Osteopenic Distal Radius
,”
J. Orthop. Res.
,
12
(
2
), pp.
211
218
.
15.
Edwards
,
W. B.
, and
Troy
,
K. L.
, 2011, “
Finite Element Prediction of Surface Strain and Fracture Strength at the Distal Radius
,”
Med. Eng. Phys.
, doi: .
16.
Troy
,
K. L.
, and
Grabiner
,
M. D.
, 2007, “
Off-Axis Loads Cause Failure of the Distal Radius at Lower Magnitudes than Axial Loads: A Finite Element Analysis
,”
J. Biomech.
,
40
(
8
), pp.
1670
1675
.
17.
Buchanan
,
D.
, and
Ural
,
A.
, 2010, “
Finite Element Modeling of the Influence of Hand Position and Bone Properties on the Colles’ Fracture Load during a Fall
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081007
.
18.
Anderson
,
D. D.
,
Deshpande
,
B. R.
,
Daniel
,
T. E.
, and
Baratz
,
M. E.
, 2005, “
A Three-Dimensional Finite Element Model of the Radiocarpal Joint: Distal Radius Fracture Step-Off and Stress Transfer
,”
Iowa Orthop. J.
,
25
, pp.
108
117
.
19.
Keller
,
T. S.
, 1994, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
(
9
), pp.
1159
1168
.
20.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
(
6
), pp.
393
405
.
21.
Majima
,
M.
,
Horii
,
E.
,
Matsuki
,
H.
,
Hirata
,
H.
, and
Genda
,
E.
, 2008, “
Load Transmission Through the Wrist in the Extended Position
,”
J. Hand Surg. Am.
,
33
(
2
), pp.
182
188
.
22.
Moojen
,
T. M.
,
Snel
,
J. G.
,
Ritt
,
M. J.
,
Kauer
,
J. M.
,
Verema
,
H. W.
, and
Bos
,
K. E.
, 2002, “
Three-Dimensional Carpal Kinematics In Vivo
,”
Clin. Biomech.
,
17
(
7
), pp.
506
514
.
23.
Kobayashi
,
M.
,
Berger
,
R. A.
,
Nagy
,
L.
,
Linscheid
,
R. L.
,
Uchiyama
,
S.
,
Ritt
,
M.
, and
An
,
K. N.
, 1997, “
Normal Kinematics of Carpal Bones: A Three-Dimensional Analysis of Carpal Bone Motion Relative to the Radius
,”
J. Biomech.
,
30
(
8
), pp.
787
793
.
24.
Augat
,
P.
,
Iida
,
H.
,
Jiang
,
Y.
,
Diao
,
E.
, and
Genant
,
H. K.
, 1998, “
Distal Radius Fractures: Mechanisms of Injury and Strength Prediction by Bone Mineral Assessment
,”
J. Orthop. Res.
,
16
(
5
), pp.
629
635
.
25.
Steinhauser
,
E.
,
Diehl
,
P.
,
Hadaller
,
M.
,
Schauwecker
,
J.
,
Busch
,
R.
,
Gradinger
,
R.
, and
Mittelmeier
,
W.
, 2006, “
Biomechanical Investigation of the Effect of High Hydrostatic Pressure Treatment on the Mechanical Properties of Human Bone
,”
J. Biomed. Mater. Res. B. Appl. Biomater.
,
76
(
1
), pp.
130
135
.
26.
Rohl
,
L.
,
Larsen
,
E.
,
Linde
,
F.
,
Odgaard
,
A.
, and
Jorgensen
,
J.
, 1991, “
Tensile and Compressive Properties of Cancellous Bone
,”
J. Biomech.
,
24
(
12
), pp.
1143
1149
.
27.
Schileo
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2007, “
Subject-Specific Finite Element Models can Accurately Predict Strain Levels in Long Bones
,”
J. Biomech.
,
40
(
13
), pp.
2982
2989
.
28.
Keyak
,
J. H.
, and
Rossi
,
S. A.
, 2000, “
Prediction of Femoral Fracture Load Using Finite Element Models: An Examination of Stress- and Strain-Based Failure Theories
,”
J. Biomech.
,
33
(
2
), pp.
209
214
.
29.
Verhulp
,
E.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
Comparison of Micro-level and Continuum-level Voxel Models of the Proximal Femur
,”
J. Biomech.
,
39
(
16
), p.
2951
2957
.
30.
Eswaran
,
S. K.
,
Fields
,
A. J.
,
Nagarathnam
,
P.
, and
Keaveny
,
T. M.
, 2009, “
Multi-scale Modeling of the Human Vertebral Body: Comparison of Micro-CT Based High-Resolution and Continuum-Level Models
,”
Pac. Symp. Biocomput.
,
14
, pp.
293
303
.
You do not currently have access to this content.