The ability to measure six degrees of freedom (6 DOF) head kinematics in motor vehicle crash conditions is important for assessing head-neck loads as well as brain injuries. A method for obtaining accurate 6 DOF head kinematics in short duration impact conditions is proposed and validated in this study. The proposed methodology utilizes six accelerometers and three angular rate sensors (6aω configuration) such that an algebraic equation is used to determine angular acceleration with respect to the body-fixed coordinate system, and angular velocity is measured directly rather than numerically integrating the angular acceleration. Head impact tests to validate the method were conducted using the internal nine accelerometer head of the Hybrid III dummy and the proposed 6aω scheme in both low (2.3 m/s) and high (4.0 m/s) speed impact conditions. The 6aω method was compared with a nine accelerometer array sensor package (NAP) as well as a configuration of three accelerometers and three angular rate sensors (3aω), both of which have been commonly used to measure 6 DOF kinematics of the head for assessment of brain and neck injuries. The ability of each of the three methods (6aω, 3aω, and NAP) to accurately measure 6 DOF head kinematics was quantified by calculating the normalized root mean squared deviation (NRMSD), which provides an average percent error over time. Results from the head impact tests indicate that the proposed 6aω scheme is capable of producing angular accelerations and linear accelerations transformed to a remote location that are comparable to that determined from the NAP scheme in both low and high speed impact conditions. The 3aω scheme was found to be unable to provide accurate angular accelerations or linear accelerations transformed to a remote location in the high speed head impact condition due to the required numerical differentiation. Both the 6aω and 3aω schemes were capable of measuring accurate angular displacement while the NAP instrumentation was unable to produce accurate angular displacement due to double numerical integration. The proposed 6aω scheme appears to be capable of measuring accurate 6 DOF kinematics of the head in any severity of impact conditions.

References

1.
Becker
,
E.
, and
Willems
,
G.
, 1975, “
An Experimentally Validated 3-D Inertial Tracking Package for Application in Biodynamic Research
,”
J. Stapp Car Crash
,
19
, pp.
899
930
.
2.
Ewing
,
C. L.
,
Thomas
,
D. J.
,
Lustick
,
L.
,
Becker
,
E.
,
Willems
,
G. C.
, and
Muzzy
,
W. H.
, 1975, “
The Effect of the Initial Position of the Head and Neck on the Dynamic Response of the Human Head and Neck to −Gx Impact Acceleration
,”
J. Stapp Car Crash
,
19
, pp.
487
512
.
3.
Ewing
,
C. L.
,
Thomas
,
D. J.
,
Majewski
,
P. L.
,
Black
,
R.
, and
Lustick
,
L.
, 1977, “
Measurement of Head, T1, and Pelvic Response to −Gx Impact Acceleration
,”
J. Stapp Car Crash
,
21
, pp.
509
545
.
4.
Ewing
,
C. L.
,
Thomas
,
D. J.
,
Lustick
,
Muzzy
,
W. H.
,
Willems
,
G. C.
, and
Majewski
,
P.
, 1977, “
Dynamic Response of the Human Head and Neck to +Gy Impact Acceleration
,”
J. Stapp Car Crash
,
21
, pp.
549
586
.
5.
Krieger
,
K. W.
,
Padgaonkar
,
A. J.
, and
King
,
A. I.
, 1976, “
Full-Scale Experimental Simulation of Pedestrian-Vehicle Impacts
,”
J. Stapp Car Crash
,
20
, pp.
431
463
.
6.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
, 1975, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
J. Appl. Mech.
,
42
, pp.
552
556
.
7.
Nusholtz
,
G. S.
,
Kaiker
,
P. S.
, and
Lehman
,
R. J.
, 1986, “
Critical Limitations on Significant Factors in Head Injury Research
,”
J. Stapp Car Crash
,
30
, pp.
237
267
.
8.
Viano
,
D. C.
,
Melvin
,
J. W.
,
Mccleary
,
J. D.
,
Madeira
,
R. G.
,
Shee
,
T. R.
, and
Horsch
,
J. D.
, 1986, “
Measurement of Head Dynamics and Facial Contact Forces in the Hybrid III Dummy
,”
J. Stapp Car Crash
,
30
, pp.
269
289
.
9.
Laughlin
,
D. R.
, 1989, “
A Magnetohydrodynamic Angular Motion Sensor for Anthropomorphic Test Device Instrumentation
,”
J. Stapp Car Crash
,
33
, pp.
43
77
.
10.
Bendjellal
,
F.
,
Oudenard
,
L.
,
Uriot
,
J.
,
Brigout
,
C.
, and
Brun-Canau
,
F.
, 1990, “
Computation of Hybrid III Head Dynamics in Various Impact Situations
,”
J. Stapp Car Crash
,
34
, pp.
207
232
.
11.
Bendjellal
,
F.
,
Oudenard
,
L.
,
Eller
,
E.
,
Koch
,
M.
,
Planath
,
I.
, and
Tarriere
,
C.
, 1992, “
Measurement of Head Angular Acceleration in Crash Tests: Development of an Electronic Device for the Hybrid III Dummy
,”
J. Stapp Car Crash
,
36
, pp.
13
28
.
12.
Nusholtz
,
G. S.
, 1993, “
Geometric Methods in Determining Rigid-body Dynamics
,”
Exp. Mech.
,
33
, pp.
153
158
.
13.
Dimasi
,
F. P.
,
Eppinger
,
R. H.
, and
Bandak
,
F. A.
, 1995, “
Computational Analysis of Head Impact Response Under Car Crash Loadings
,”
J. Stapp Car Crash
,
39
, pp.
425
438
.
14.
Dimasi
,
F. P.
, 1995, “
Transformation of Nine-Accelerometer-Package (NAP) Data for Replicating Headpart Kinematics and Dynamic Loading
,” NHTSA Technical Report, DOT HS 808 282,
National Highway Traffic Safety Administration, U.S. Department of Transportation
, Washington, DC.
15.
Martin
,
P. G.
,
Hall
,
G. W.
,
Crandall
,
J. R.
,
Pilkey
,
W. D.
,
Chou
,
C. C.
, and
Fileta
,
B. B.
, 1997, “
Measurement Techniques for Angular Velocity and Acceleration in an Impact Environment
,” SAE Paper 970575, Society of Automotive Engineers, Warrendale, PA.
16.
Martin
,
P. G.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
, 1998, “
Measuring the Acceleration of a Rigid Body
,”
Shock Vib.
5
, pp.
211
224
.
17.
Yoganandan
,
N.
,
Zhang
,
J.
,
Pintar
,
F. A.
, and
Liu
,
Y. K.
, 2006, “
Lightweight Low-Profile Nine-Accelerometer Package to Obtain Head Angular Accelerations in Short-Duration Impacts
,
J. Biomech.
,
39
, pp.
1347
1354
.
18.
Deng
,
B.
,
Begeman
,
P. C.
,
Yang
,
K. H.
,
Tashman
,
S.
, and
King
,
A. I.
, 2000, “
Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-end Impacts
,”
J. Stapp Car Crash
,
44
, pp.
171
188
.
19.
Yoganandan
,
N.
,
Pintar
,
F.
,
Stemper
,
B.
,
Schlick
,
M.
,
Philippens
,
M.
, and
Wismans
,
J.
, 2000, “
Biomechanics of Human Occupants in Simulated Rear Crashes: Documentation of Neck Injuries and Comparison of Injury Criteria
,”
J. Stapp Car Crash
,
44
, pp.
189
204
.
20.
Hardy
,
W. N.
,
Mason
,
M.
,
Foster
,
C. D.
,
Shah
,
C. S.
,
Kopacz
,
J. M.
,
Yang
,
K. H.
,
King
,
A. I.
,
Jennifer
,
B.
,
Michael
,
B.
,
William
,
A.
, and
Scott
T.
, 2007, “
A Study of the Response of the Human Cadaver Head to Impact
,”
J. Stapp Car Crash
,
51
, pp.
17
80
.
21.
Nikravesh
,
P. E.
,
Wehage
,
R. A.
, and
Kwon
O.K.
, 1985, “
Euler Parameters in Computational Kinematics and Dynamics
,”
J. Mech. Transm. Autom. Design
,
107
, pp.
358
369
.
22.
Nikravesh
,
P. E.
, 1988,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
London
.
23.
Haug
,
E. J.
, 1989,
Computer-Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods
, Vol.
1
,
Allyn and Bacon
,
Boston, MA
.
24.
Hardy
,
W. N.
,
Foster
,
C.
,
Mason
,
M.
,
Yang
,
K.
,
King
,
A.
, and
Tashman
,
S.
, 2001, “
Investigation of Head Injury Mechanism Using Neutral Density Technology and High-Speed Biplanar X-ray
,”
J. Stapp Car Crash
,
45
, pp.
337
368
.
25.
Takhounts
,
E. G.
,
Eppinger
,
R. H.
,
Campbell
,
J. Q.
,
Tannous
,
R. E.
,
Power
,
E. D.
, and
Shook
,
L. S.
, 2003, “
On the Development of the SIMon Finite Element Head Model
,”
J. Stapp Car Crash
,
47
, pp.
107
133
.
26.
Kallieris
,
D.
,
Rizzetti
,
A.
,
Mattern
,
R.
,
Thunnissen
,
J.
, and
Philippens
,
M.
, 1996, “
Cervical Human Spine Loads During Traumatomechanical Investigations
,”
Proceedings of the International Conference on the Biomechanics of Impact (IRCOBI)
, pp.
89
106
.
27.
SAE
, 2007, “
Instrumentation for impact test, Part 1: Electronic instrumentation
,” SAE J211/1, Society of Automotive Engineers.
28.
Wu
,
J.
,
Shi
,
Y.
Kang
,
J.
, and
Nusholtz
,
G. S.
, 2009, “
Using Trial-Axial Angular Rate Sensor and Accelerometer to Determine Spatial Orientation and Position in Impact Tests
,” SAE Paper 2009-01-0055, Society of Automotive Engineers, Warrendale, PA.
You do not currently have access to this content.