A new experimental setup has been implemented to precisely measure the deformations of an entire model abdominal aortic aneurysm (AAA). This setup addresses a gap between the computational and experimental models of AAA that have aimed at improving the limited understanding of aneurysm development and rupture. The experimental validation of the deformations from computational approaches has been limited by a lack of consideration of the large and varied deformations that AAAs undergo in response to physiologic flow and pressure. To address the issue of experimentally validating these calculated deformations, a stereoscopic imaging system utilizing two cameras was constructed to measure model aneurysm displacement in response to pressurization. The three model shapes, consisting of a healthy aorta, an AAA with bifurcation, and an AAA without bifurcation, were also evaluated with computational solid mechanical modeling using finite elements to assess the impact of differences between material properties and for comparison against the experimental inflations. The device demonstrated adequate accuracy (surface points were located to within 0.07 mm) for capturing local variation while allowing the full length of the aneurysm sac to be observed at once. The experimental model AAA demonstrated realistic aneurysm behavior by having cyclic strains consistent with reported clinical observations between pressures 80 and 120 mm Hg. These strains are 1–2%, and the local spatial variations in experimental strain were less than predicted by the computational models. The three different models demonstrated that the asymmetric bifurcation creates displacement differences but not cyclic strain differences within the aneurysm sac. The technique and device captured regional variations of strain that are unobservable with diameter measures alone. It also allowed the calculation of local strain and removed rigid body motion effects on the strain calculation. The results of the computations show that an asymmetric aortic bifurcation created displacement differences but not cyclic strain differences within the aneurysm sac.

References

References
1.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.
2.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment: Demonstrative Application
,”
Ann. N.Y. Acad. Sci.
,
1085
, pp.
11
21
.
3.
Borghi
,
A.
,
Wood
,
N. B.
,
Mohiaddin
,
R. H.
, and
Xu
,
X. Y.
, 2008, “
Fluid-Solid Interaction Simulation of Flow and Stress Pattern in Thoracoabdominal Aneurysms: A Patient-Specific Study
,”
J. Fluids Struct.
,
24
(
2
), pp.
270
280
.
4.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
, 1996, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
J. Biomech. Eng.
,
118
(
3
), pp.
280
286
.
5.
Di Martino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
, 2001, “
Fluid-Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
,
23
(
9
), pp.
647
655
.
6.
Leung
,
J.
,
Wright
,
A.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S.
,
Hughes
,
A.
, and
Xu
,
Y.
, 2006, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models
,”
Biomed. Eng. Online
,
5
(
1
), p.
33
.
7.
Papaharilaou
,
Y.
,
Ekaterinaris
,
J. A.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
, 2007, “
A Decoupled Fluid Structure Approach for Estimating Wall Stress in Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
(
2
), pp.
367
377
.
8.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2005, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online.
,
4
, p.
64
.
9.
Wolters
,
B. J.
,
Rutten
,
M. C.
,
Schurink
,
G. W.
,
Kose
,
U.
,
de Hart
,
J.
, and
van de Vosse
,
F. N.
, 2005, “
A Patient-Specific Computational Model of Fluid-Structure Interaction in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
27
(
10
), pp.
871
883
.
10.
Wayman
,
B. H.
,
Taylor
,
W. R.
,
Rachev
,
A.
, and
Vito
,
R. P.
, 2008, “
Arteries Respond to Independent Control of Circumferential and Shear Stress in Organ Culture
,”
Ann. Biomed. Eng.
,
36
(
5
), pp.
673
684
.
11.
Kanyanta
,
V.
,
Ivankovic
,
A.
, and
Karac
,
A.
, 2009, “
Validation of a Fluid-Structure Interaction Numerical Model for Predicting Flow Transients in Arteries
,”
J. Biomech.
,
42
(
11
), pp.
1705
1712
.
12.
Doyle
,
B. J.
,
Corbett
,
T. J.
,
Cloonan
,
A. J.
,
O’Donnell
,
M. R.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2009, “
Experimental Modelling of Aortic Aneurysms: Novel Applications of Silicone Rubbers
,”
Med. Eng. Phys.
,
31
(
8
), pp.
1002
1012
.
13.
Vorp
,
D. A.
, 2007, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.
14.
Li
,
Z.-Y.
,
Sadat
,
U.
,
U-King-Im
,
J.
,
Tang
,
T. Y.
,
Bowden
,
D. J.
,
Hayes
,
P. D.
, and
Gillard
,
J. H.
, 2010, “
Association Between Aneurysm Shoulder Stress and Abdominal Aortic Aneurysm Expansion: A Longitudinal Follow-Up Study
,”
Circulation
,
122
(
18
), pp.
1815
1822
.
15.
van Keulen
,
J. W.
,
van Prehn
,
J.
,
Prokop
,
M.
,
Moll
,
F. L.
, and
van Herwaarden
,
J. A.
, 2009, “
Dynamics of the Aorta Before and After Endovascular Aneurysm Repair: A Systematic Review
,”
Eur. J. Vasc. Endovasc. Surg.
,
38
(
5
), pp.
586
596
.
16.
Long
,
A.
,
Rouet
,
L.
,
Bissery
,
A.
,
Rossignol
,
P.
,
Mouradian
,
D.
, and
Sapoval
,
M.
, 2005, “
Compliance of Abdominal Aortic Aneurysms Evaluated by Tissue Doppler Imaging: Correlation With Aneurysm Size
,”
J. Vasc. Surg.
,
42
(
1
), pp.
18
26
.
17.
Sacks
,
M. S.
,
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Federle
,
M. P.
, and
Webster
,
M. W.
, 1999, “
In Vivo Three-Dimensional Surface Geometry of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
469
479
.
18.
Sutton
,
M. A.
,
Ke
,
X.
,
Lessner
,
S. M.
,
Goldbach
,
M.
,
Yost
,
M.
,
Zhao
,
F.
, and
Schreier
,
H. W.
, 2008, “
Strain Field Measurements on Mouse Carotid Arteries Using Microscopic Three-Dimensional Digital Image Correlation
,”
J. Biomed. Mater. Res. Part A
,
84A
(
1
), pp.
178
190
.
19.
Genovese
,
K.
, 2009, “
A Video-Optical System for Time-Resolved Whole-Body Measurement on Vascular Segments
,”
Opt. Lasers Eng.
,
47
(
9
), pp.
995
1008
.
20.
Deplano
,
V.
,
Knapp
,
Y.
,
Bertrand
,
E.
, and
Gaillard
,
E.
, 2007, “
Flow Behaviour in an Asymmetric Compliant Experimental Model for Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
11
), pp.
2406
2413
.
21.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
22.
Shah
,
P. M.
,
Scarton
,
H. A.
, and
Tsapogas
,
M. J.
, 1978, “
Geometric Anatomy of the Aortic–Common Iliac Bifurcation
,”
J. Anat.
,
126
(
Pt 3
), pp.
451
458
.
23.
Gaillard
,
E.
,
Bergeron
,
P.
, and
Deplano
,
V.
, 2007, “
Influence of Wall Compliance on Hemodynamics in Models of Abdominal Aortic Aneurysm
,”
J. Endovasc. Ther.
,
14
(
4
), pp.
593
599
.
24.
Wolberg
,
G.
, 1994,
Digital Image Warping
,
IEEE Computer Society Press
,
New York
.
25.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
, 2002, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.
26.
Vande Geest
,
J. P.
,
Schmidt
,
D. E.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2008, “
The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
921
932
.
27.
Scotti
,
C. M.
, and
Finol
,
E. A.
, 2007, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid-Structure Interaction Study
,”
Comput. Struct.
,
85
(
11–14
), pp.
1097
1113
.
28.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2009, “
Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
J. Biomech. Eng.
,
131
(
6
), p.
061015
.
29.
Shum
,
J.
,
DiMartino
,
E. S.
,
Goldhamme
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
, 2010, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
,
37
(
2
), pp.
638
648
.
30.
Shum
,
J.
,
Martufi
,
G.
,
Di Martino
,
E.
,
Washington
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2011, “
Quantitative Assessment of Abdominal Aortic Aneurysm Geometry
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
277
286
.
31.
Shum
,
J.
,
Xu
,
A.
,
Chatnuntawech
,
I.
, and
Finol
,
E. A.
, 2011, “
A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
249
259
.
32.
Khanafer
,
K.
, and
Berguer
,
R.
, 2009, “
Fluid-Structure Interaction Analysis of Turbulent Pulsatile Flow Within a Layered Aortic Wall as Related to Aortic Dissection
,”
J. Biomech.
,
42
(
16
), pp.
2642
2648
.
33.
Li
,
Z.
, and
Kleinstreuer
,
C.
, 2005, “
Fluid-Structure Interaction Effects on Sac-Blood Pressure and Wall Stress in a Stented Aneurysm
,”
J. Biomech. Eng.
,
127
(
4
), pp.
662
671
.
34.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
, 2009, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
J. Biomech. Eng.
,
131
(
3
), p.
031001
.
35.
Polansky
,
J.
,
Boiron
,
O.
, and
Novacek
,
V.
, 2005, “
Identification of Viscoelastic Properties of Artificial Materials Simulating Vascular Wall
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
4 supp 1
), pp.
219
220
.
36.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
de Tolosa
,
E. M. C.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
, 2006, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.
37.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
, 2004, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Edovasc. Surg.
,
28
(
2
), pp.
168
176
.
38.
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2002, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
(
3
), pp.
598
604
.
39.
Doyle
,
B. J.
,
Corbett
,
T. J.
,
Cloonan
,
A. J.
,
O’Donnell
,
M. R.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2009, “
Experimental Modelling of Aortic Aneurysms: Novel Applications of Silicone Rubbers
,”
Med. Eng. Phys.
,
31
(
8
), pp.
1002
1012
.
40.
Fraser
,
K. H.
,
Li
,
M. X.
,
Lee
,
W. T.
,
Easson
,
W. J.
, and
Hoskins
,
P. R.
, 2009, “
Fluid-Structure Interaction in Axially Symmetric Models of Abdominal Aortic Aneurysms
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
223
(
2
), pp.
195
209
.
41.
Doyle
,
B. J.
,
Cloonan
,
A. J.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2010, “
Identification of Rupture Locations in Patient-Specific Abdominal Aortic Aneurysms Using Experimental and Computational Techniques
,”
J. Biomech.
,
43
(
7
), pp.
1408
1416
.
42.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
(
3
), pp.
693
696
.
43.
Speelman
,
L.
,
Bosboom
,
E. M.
,
Schurink
,
G. W.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M. J.
, and
van de Vosse
,
F. N.
, 2009, “
Initial Stress and Nonlinear Material Behavior in Patient-Specific AAA Wall Stress Analysis
,”
J. Biomech.
,
42
(
11
), pp.
1713
1719
.
44.
Faries
,
P. L.
,
Agarwal
,
G.
,
Lookstein
,
R.
,
Bernheim
,
J. W.
,
Cayne
,
N. S.
,
Cadot
,
H.
,
Goldman
,
J.
,
Kent
,
K. C.
,
Hollier
,
L. H.
, and
Marin
,
M. L.
, 2003, “
Use of Cine Magnetic Resonance Angiography in Quantifying Aneurysm Pulsatility Associated With Endoleak
,”
J. Vasc. Surg.
,
38
(
4
), pp.
652
656
.
You do not currently have access to this content.