This study investigates the effect of the pilot hole size, implant depth, synthetic bone density, and screw size on the pullout strength of the self-tapping screw using analytical, finite element, and experimental methodologies. Stress distribution and failure propagation mode around the implant thread zone are also investigated. Based on the finite element analysis (FEA) results, an analytical model for the pullout strength of the self-tapping screw is constructed in terms of the (synthetic) bone mechanical properties, screw size, and the implant depth. The pullout performance of self-tapping screws is discussed. Results from the analytical and finite element models are experimentally validated.
Issue Section:
Research Papers
References
1.
Roy-Camille
, R.
, Saillant
, G.
, and Mazel
, C.
, 1986, “Internal Fixation of The Lumbar Spine With Pedicle Screw Plating
,” Clin. Orthop. Relat. Res.
, 203
, pp. 7
–17
.2.
Sarzier
, S. J.
, Evans
, J. A.
, and Cahill
, W. D.
, 2002, “Increased Pedicle Screw Pullout Strength with Vertebroplasty Augmentation in Osteoporotic Spines
,” J. Neurosurg.: Spine
, 96
, pp. 309
–312
.3.
Chapman
, J. R.
, Harrington
, R. M.
, Lee
, K. M.
, Anderson
, P. A.
, Tencer
, A. F.
, and Kowalski
, D.
, 1996, “Factors Affecting the Pullout Strength of Cancellous Bone Screws
,” ASME J. Biomech. Eng.
, 118
, pp. 391
–398
.4.
Hearn
, T. C.
, Schatzker
, J.
, and Wolfson
, N.
, 1993, “Extraction Strength of Cannulated Cancellous Bone Screws
,” J. Orthop. Trauma
, 7
, pp. 138
–141
.5.
Chen
, L. H.
, Tai
, C. L.
, Lai
, P. L.
, Lee
, D. M.
, Tsai
, T. T.
, Fu
, T. S.
, Niu
, C. C.
, and Chen
, W. J.
, 2009, “Pullout Strength for Cannulated Pedicle Screws with Bone Cement Augmentation in Severely Osteoporotic Bone: Influences of Radial Hole and Pilot Hole Tapping
,” Clin. Biomech.
, 24
, pp. 613
–618
.6.
Hsu
, C. C.
, Chao
, C. K.
, Wang
, J. L.
, Hou
, S. M.
, Tsai
, Y. T.
, and Lin
, J.
, 2005, “Increase of Pullout Strength of Spinal Pedicle Screws with Conical Core: Biomechanical Tests and Finite Element Analyses
,” J. Orthop. Res.
, 23
, pp. 788
–794
.7.
Abshire
, B. B.
, McLain
, F. R.
, Valdevit
, A.
, and Kambic
, H. E.
, 2001, “Characteristics of Pullout Failure in Conical and Cylindrical Pedicle Screws after Full Insertion and Back-out
,” Spine J.
, 1
, pp. 408
–414
.8.
Battula
, S.
, Schoenfeld
, A.
, Vrabec
, G.
, and Njus
, G. O.
, 2006, “Experimental Evaluation of The Holding Power/Stiffness of The Self-tapping Bone Screws in Normal and Osteoporotic Bone Material
,” Clin. Biomech.
, 21
, pp. 533
–537
.9.
Qktenoglu
, B. T.
, Ferrara
, L. A.
, Andalkar
, N.
, Ozer
, A. F.
, Sarioglu
, A. C.
, and Benzel
, E. C.
, 2001, “Effects of Hole Preparation on Screw Pullout Resistance and Insertional Torque: A Biomechanical Study
,” J. Neurosurg.: Spine
, 94
, pp. 91
–96
.10.
Becker
, S.
, Chavanne
, A.
, Spitaler
, R.
, Kropik
, K.
, Aigner
, N.
, Ogon
, M.
, and Redl
, H.
, 2008, “Assessment of Different Screw Augmentation Techniques and Screw Designs in Osteoporotic Spines
,” Eur. Spine J.
, 17
, pp. 1462
–1469
.11.
Turner
, I. G.
, and Rice
, G. N.
, 1992, “Comparison of Bone Screw Holding Strength in Healthy Bovine and Osteoporotic Human Cancellous Bone
,” Clin. Mater.
, 9
, pp. 105
–107
.12.
Hadjipavlou
, A. G.
, Nicodemus
, C. L.
, Al-Hamdan
, F. A.
, Simmons
, J. W.
, and Pope
, M. H.
, 1997, “Correlation of Bone Equivalent Mineral Density to Pullout Resistance of Triangulated Pedicle Screw Construct
,” J. Spinal Disord.
, 10
, pp. 12
–19
.13.
Zdero
, R.
, Rose
, S.
, Shcemitsch
, E. H.
, and Papini
, M.
, 2007, “Cortical Screw Pullout Strength and Effective Shear Stress in Synthetic Third Generation Composite Femurs
,” ASME J. Biomech. Eng.
, 129
, pp. 289
–293
.14.
Chao
, C. K.
, Hsu
, C. C.
, Wang
, J. L.
, and Lin
, J.
, 2008, “Increasing Bending Strength and Pullout Strength in Conical Pedicle Screws Biomechanical Tests and Finite Element Analyses
,” J. Spinal Disord. Tech.
, 21
, pp. 130
–138
.15.
Zdero
, R.
, Elfallah
, K.
, Olsen
, M.
, and Schemitsch
, E. H.
, 2009, “Cortical Screw Purchase in Synthetic and Human Femurs
,” ASME J. Biomech. Eng.
, 131
, p. 094503
.16.
George
, D. C.
, Krag
, M. H.
, Johnson
, C. C.
, Van Hal
, M. E.
, Haugh
, L. D.
, and Grobler
, L. J.
, 1991, “Hole Preparation Techniques for Transpedicle Screws. Effects on Pull-out Strength from Human Cadaveric Vertebrae
,” Spine
, 16
, pp. 181
–184
.17.
Coe
, J. D.
, Warden
, K. E.
, Herzig
, M. A.
, and McAfee
, P. C.
, 1990, “Influence of Bone Mineral Density on The Fixation of Thoracolumbar Implants. A Comparative Study of Transpedicular Screws, Laminar Hooks, and Spinous Process Wires
,” Spine
, 15
, pp. 902
–907
.18.
Fung
, Y. C.
, 1981, Biomechanics: Mechanical Properties of Living Tissues
, Springer
, New York
, Chap. 12.19.
Sell
, P.
, Collins
, M.
, and Dave
, J.
, 1988, “Pedicle Screws: Axial Pull-out Strength in The Lumbar Spine
,” Spine
, 13
, pp. 1075
–1076
.20.
Szivek
, J. A.
, Thomas
, M.
, and Benjamin
, J. B.
, 1993, “Technical Note Characterization of a Synthetic Foam as A Model for Human Cancellous Bone
,” J. Appl. Biomater
, 4
, pp. 269
–272
.21.
Szivek
, J. A.
, Thompson
, J. D.
, and Benjamin
, J. B.
, 1995, “Characterization of Three Formulations of A Synthetic Foam as Models for A Range of Human Cancellous Bone Types
,” J. Appl. Biomater.
, 6
, pp. 125
–128
.22.
“Concrete Damaged Plasticity,” ABAQUS Analysis User’s Manual, Version 6.10, 2010, Dassault systemes, Inc.
23.
ASTM F543-07
, 2009, “Standard Specification and Test Methods for Metallic Medical Bone Screws
,” Annual Books of ASTM Standards
, Volume 13.01, American Society for Testing and Materials
, Philadelphia
, pp. 134
–153
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.