The foot consists of many small bones with complicated joints that guide and limit motion. A variety of invasive and noninvasive means [mechanical, X-ray stereophotogrammetry, electromagnetic sensors, retro-reflective motion analysis, computer tomography (CT), and magnetic resonance imaging (MRI)] have been used to quantify foot bone motion. In the current study we used a foot plate with an electromagnetic sensor to determine an individual subject’s foot end range of motion (ROM) from maximum plantar flexion, internal rotation, and inversion to maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. We then used a custom built MRI-compatible device to hold each subject’s foot during scanning in eight unique positions determined from the end ROM data. The scan data were processed using software that allowed the bones to be segmented with the foot in the neutral position and the bones in the other seven positions to be registered to their base positions with minimal user intervention. Bone to bone motion was quantified using finite helical axes (FHA). FHA for the talocrural, talocalcaneal, and talonavicular joints compared well to published studies, which used a variety of technologies and input motions. This study describes a method for quantifying foot bone motion from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation with relatively little user processing time.

References

References
1.
Manter
,
J. T.
, 1941, “
Movements of the Subtalar and Transverse Tarsal Joints
,”
Anat. Rec.
,
80
(
4
), pp.
397
410
.
2.
Elftman
,
H.
, 1960, “
The Transverse Tarsal Joint and Its Control
,”
Clin. Orthop.
,
16
, pp.
41
45
.
3.
Van Langelaan
,
E. J.
, 1983, “
A Kinematic Analysis of the Tarsal Joints, an X-Ray Photogrammetric Study
,”
Acta Orthop. Scand. Suppl.
,
204
, pp.
1
269
.
4.
Lundberg
,
A.
, 1989, “
Kinematics of the Ankle and Foot. In Vivo Roentgen Stereophotogrammetry
,”
Acta Orthop. Scand. Suppl.
,
233
, pp.
1
24
.
5.
Kitaoka
,
H. B.
,
Luo
,
Z. P.
, and
An
,
K. N.
, 1997, “
Three-Dimensional Analysis of Normal Ankle and Foot Mobility
,”
Am. J. Sports Med.
,
25
(
2
), pp.
238
242
.
6.
Cornwall
,
M. W.
, and
Mcpoil
,
T. G.
, 2002, “
Motion of the Calcaneus, Navicular, and First Metatarsal During the Stance Phase of Walking
,”
J. Am. Podiatr. Med. Assoc.
,
92
(
2
), pp.
67
76
.
7.
van den Bogert
,
A. J.
,
Smith
,
G. D.
, and
Nigg
,
B. M.
, 1994, “
In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach
,”
J. Biomech.
,
27
(
12
), pp.
1477
1488
.
8.
Leardini
,
A.
,
Benedetti
,
M. G.
,
Catani
,
F.
,
Simoncini
,
L.
, and
Giannini
,
S.
, 1999, “
An Anatomically Based Protocol for the Description of Foot Segment Kinematics During Gait
,”
Clin. Biomech. (Bristol, Avon)
,
14
(
8
), pp.
528
536
.
9.
Kidder
,
S. M.
,
Abuzzahab
,
F. S.
,
Harris
,
G. F.
, and
Johnson
,
J.
, 1996, “
A System for the Analysis of Foot and Ankle Kinematics During Gait
,”
IEEE Trans. Rehabil. Eng.
,
4
(
1
), pp.
25
32
.
10.
Lundgren
,
P.
,
Nester
,
C.
,
Liu
,
A.
,
Arndt
,
A.
,
Jones
,
R.
,
Stacoff
,
A.
,
Wolf
,
P.
, and
Lundberg
,
A.
, 2008, “
Invasive in Vivo Measurement of Rear-, Mid- and Forefoot Motion During Walking
,”
Gait Posture
,
28
(
1
), pp.
93
100
.
11.
Stindel
,
E.
,
Udupa
,
J. K.
,
Hirsch
,
B. E.
, and
Odhner
,
D.
, 2001, “
An In Vivo Analysis of the Motion of the Peri-Talar Joint Complex Based on MR Imaging
,”
IEEE Trans. Biomed. Eng.
,
48
(
2
), pp.
236
247
.
12.
Udupa
,
J. K.
,
Hirsch
,
B. E.
,
Hillstrom
,
H. J.
,
Bauer
,
G. R.
, and
Kneeland
,
J. B.
, 1998, “
Analysis of in Vivo 3-D Internal Kinematics of the Joints of the Foot
,”
IEEE Trans. Biomed. Eng.
,
45
(
11
), pp.
1387
1396
.
13.
Wolf
,
P.
,
Luechinger
,
R.
,
Boesiger
,
P.
,
Stuessi
,
E.
, and
Stacoff
,
A.
, 2007, “
A MR Imaging Procedure to Measure Tarsal Bone Rotations
,”
J. Biomech. Eng.
,
129
(
6
), pp.
931
936
.
14.
Beimers
,
L.
,
Maria Tuijthof
,
G. J.
,
Blankevoort
,
L.
,
Jonges
,
R.
,
Maas
,
M.
, and
Van Dijk
,
C. N.
, 2008, “
In-Vivo Range of Motion of the Subtalar Joint Using Computed Tomography
,”
J. Biomech. Eng.
,
41
(
7
), pp.
1390
1397
.
15.
Sheehan
,
F. T.
, 2010, “
The Instantaneous Helical Axis of the Subtalar and Talocrural Joints: A Non-Invasive In Vivo Dynamic Study
,”
J. Foot Ankle Surg.
,
3
(13)
, pp.
1
10
.
16.
Asla
,
R. J. D.
,
Wan
,
L.
,
Rubash
,
H. E.
, and
Li
,
G.
, 2005, “
Six DoF In Vivo Kinematics of the Ankle Joint Complex: Application of a Combined Dual-Orthogonal Fluoroscopic and Magnetic Resonance Imaging Technique,”
J. Orthop. Res.
,
24
(5)
, pp.
1019
1027
.
17.
Siegler
,
S.
,
Udupa
,
J. K.
,
Ringleb
,
S. I.
,
Imhauser
,
C. W.
,
Hirsch
,
B. E.
,
Odhner
,
D.
,
Saha
,
P. K.
,
Okereke
,
E.
, and
Roach
,
N.
, 2005, “
Mechanics of the Ankle and Subtalar Joints Revealed through a 3D Quasi-Static Stress MRI Technique
,”
J. Biomech. Eng.
,
38
(
3
), pp.
567
578
.
18.
Hu
,
Y.
,
Ledoux
,
W. R.
,
Fassbind
,
M.
,
Rohr
,
E. S.
,
Sangeorzan
,
B. J.
, and
Haynor
,
D. R.
, 2011, “
Multi-Rigid Image Segmentation and Registration for the Analysis of Joint Motion from 3D MRI
,” J. Biomech. Eng., in press.
19.
Beggs
,
J. S.
, 1983,
Kinematics
,
Hemisphere
,
Washington, D.C
.
20.
Lewis
,
G. S. K.
,
Kevin
A.
, and
Piazza
,
Stephen
,
J.
, 2007, “
Determination of Subtalar Joint Axis Location by Restriction of Talocrural Joint Motion
,”
Gait Posture
,
25
, pp.
63
69
.
21.
Goto
,
A.
,
Moritomo
,
H.
Itohara
,
T.
Watanabe
,
T.
, and
Sugamoto
,
K.
, 2009, “
Three-Dimensional In Vivo Kinematics of the Subtalar Joint During Dorsi-Plantarflexion and Inversion-Eversion
,”
Foot Ankle Int.
,
30
(
5
), pp.
432
438
.
22.
Inman
,
V. T.
, 1976,
The Joints of the Ankle
,
Williams and Wilkins
,
Baltimore
.
23.
Isman
,
R. E.
, and
Inman
,
V. T.
, 1968, “
Anthropometric Studies of the Human Foot and Ankle
,” Technical Report No. Technical Report 58, Biomechanics Laboratory, University of California, San Francisco and Berkeley, San Francisco.
You do not currently have access to this content.