Mechanical forces are key regulators of cell function with varying loads capable of modulating behaviors such as alignment, migration, phenotype modulation, and others. Historically, cell-stretching experiments have employed mechanically simple environments (e.g., uniform uniaxial or equibiaxial stretches). However, stretch distributions in vivo can be highly non-uniform, particularly in cases of disease or subsequent to interventional treatments. Herein, we present a cell-stretching device capable of subjecting cells to controllable gradients in biaxial stretch via radial deformation of circular elastomeric membranes. By including either a defect or a rigid fixation at the center of the membrane, various gradients are generated. Capabilities of the device were quantified by tracking marked positions of the membrane while applying various loads, and experimental feasibility was assessed by conducting preliminary experiments with 3T3 fibroblasts and 10T1/2 cells subjected to 24 h of cyclic stretch. Quantitative real-time PCR was used to measure changes in mRNA expression of a profile of genes representing the major smooth muscle phenotypes. Genes associated with the contractile state were both upregulated (e.g., calponin) and downregulated (e.g., α-2-actin), and genes associated with the synthetic state were likewise both upregulated (e.g., SKI-like oncogene) and downregulated (e.g., collagen III). In addition, cells aligned with an orientation perpendicular to the maximal stretch direction. We have developed an in vitro cell culture device that can produce non-uniform stretch environments similar to in vivo mechanics. Cells stretched with this device showed alignment and altered mRNA expression indicative of phenotype modulation. Understanding these processes as they relate to in vivo pathologies could enable a more accurately targeted treatment to heal or inhibit disease, either through implantable device design or pharmaceutical approaches.

References

References
1.
Levesque
,
M. J.
, and
Nerem
,
R. M.
, 1985, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
J. Biomech. Eng.
,
107
(
4
), pp.
341
347
.
2.
Leung
,
D. Y.
,
Glagov
,
S.
, and
Mathews
,
M. B.
, 1976, “
Cyclic Stretching Stimulates Synthesis of Matrix Components by Arterial Smooth Muscle Cells in vitro
,”
Science
,
191
(
4226
), pp.
475
477
.
3.
Lee
,
A. A.
,
Delhaas
,
T.
,
Waldman
,
L. K.
,
MacKenna
,
D. A.
,
Villarreal
,
F. J.
, and
McCulloch
,
A. D.
, 1996, “
An Equibiaxial Strain System for Cultured Cells
,”
Am. J. Physiol.
,
271
(
4
), pp.
C1400
1408
.http://ajpcell.physiology.org/content/271/4/C1400.reprinthttp://ajpcell.physiology.org/content/271/4/C1400.reprint
4.
Wang
,
J. H.
, and
Thampatty
,
B. P.
, 2006, “
An Introductory Review of Cell Mechanobiology
,”
Biomech. Model. Mechanobiol.
,
5
(
1
), pp.
1
16
.
5.
Haga
,
J. H.
,
Li
,
Y. S.
, and
Chien
,
S.
, 2007, “
Molecular Basis of the Effects of Mechanical Stretch on Vascular Smooth Muscle Cells
,”
J. Biomech.
,
40
(
5
), pp.
947
960
.
6.
Rudijanto
,
A.
, 2007, “
The Role of Vascular Smooth Muscle Cells on the Pathogenesis of Atherosclerosis
,”
Acta Med. Indones.
,
39
(
2
), pp.
86
93
.http://www.inaactamedica.org/archives/2007/17933075.pdfhttp://www.inaactamedica.org/archives/2007/17933075.pdf
7.
Mitra
,
A. K.
, and
Agrawal
,
D. K.
, 2006, “
In Stent Restenosis: Bane of the Stent Era
,”
J. Clin. Pathol.
,
59
(
3
), pp.
232
239
.
8.
Shi
,
Y.
,
O’Brien
,
J. E.
,
Fard
,
A.
,
Mannion
,
J. D.
,
Wang
,
D.
, and
Zalewski
,
A.
, 1996, “
Adventitial Myofibroblasts Contribute to Neointimal Formation in Injured Porcine Coronary Arteries
,”
Circulation
,
94
(
7
), pp.
1655
1664
.http://circ.ahajournals.org/content/94/7/1655.longhttp://circ.ahajournals.org/content/94/7/1655.long
9.
Mutsaers
,
S. E.
,
Bishop
,
J. E.
,
McGrouther
,
G.
, and
Laurent
,
G. J.
, 1997, “
Mechanisms of Tissue Repair: From Wound Healing to Fibrosis
,”
Int. J. Biochem. Cell Biol.
,
29
(
1
), pp.
5
17
.
10.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.
11.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, Jr.
, and
Meister
,
J. J.
, 1997, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.
12.
Delfino
,
A.
,
Moore
,
J. E.
,
Stergiopulos
,
N.
,
Vaclavik
,
V.
,
Genton
,
C. Y.
, and
Meister
,
J. J.
, 1998, “
Wall Stresses in the Carotid Bifurcation: Effects of Wall Non-Homogeneity and Correlation With Intimal Thickness
,”
J. Vasc. Invest.
,
4
(
2
), p.
11
.
13.
Matsumoto
,
T.
, and
Hayashi
,
K.
, 1996, “
Stress and Strain Distribution in Hypertensive and Normotensive Rat Aorta Considering Residual Strain
,”
J. Biomech. Eng.
,
118
(
1
), pp.
62
73
.
14.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2007, “
Computational Stress-Deformation Analysis of Arterial Walls Including High-Pressure Response
,”
Int. J. Cardiol.
,
116
(
1
), pp.
78
85
.
15.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, 2006, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
J. Biomech. Eng.
,
128
(
5
), pp.
757
765
.
16.
Kiousis
,
D. E.
,
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
, 2007, “
A Numerical Model to Study the Interaction of Vascular Stents With Human Atherosclerotic Lesions
,”
Ann. Biomed. Eng.
,
35
(
11
), pp.
1857
1869
.
17.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
, 2005, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.
18.
David
,
G.
, and
Humphrey
,
J. D.
, 2004, “
Redistribution of Stress due to a Circular Hole in a Nonlinear Anisotropic Membrane
,”
J. Biomech.
,
37
(
8
), pp.
1197
1203
.
19.
Mori
,
D.
,
David
,
G.
,
Humphrey
,
J. D.
, and
Moore
,
J. E.
, Jr.
, 2005, “
Stress Distribution in a Circular Membrane With a Central Fixation
,”
J. Biomech. Eng.
,
127
(
3
), pp.
549
553
.
20.
Lo
,
C. M.
,
Wang
,
H. B.
,
Dembo
,
M.
, and
Wang
,
Y. L.
, 2000, “
Cell Movement is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.
21.
Raeber
,
G. P.
,
Lutolf
,
M. P.
, and
Hubbell
,
J. A.
, 2008, “
Part II: Fibroblasts Preferentially Migrate in the Direction of Principal Strain
,”
Biomech. Model. Mechanobiol.
,
7
(
3
), pp.
215
225
.
22.
Balestrini
,
J. L.
,
Skorinko
,
J. K.
,
Hera
,
A.
,
Gaudette
,
G. R.
, and
Billiar
,
K. L.
, 2010, “
Applying Controlled Non-Uniform Deformation for in Vitro Studies of Cell Mechanobiology
,”
Biomech. Model. Mechanobiol.
,
9
(
3
), pp.
329
344
.
23.
Lloyd-Jones
,
D.
,
Adams
,
R. J.
,
Brown
,
T. M.
,
Carnethon
,
M.
,
Dai
,
S.
,
De Simone
,
G.
,
Ferguson
,
T. B.
,
Ford
,
E.
,
Furie
,
K.
,
Gillespie
,
C.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S.
,
Ho
,
P. M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lackland
,
D.
,
Lisabeth
,
L.
,
Marelli
,
A.
,
McDermott
,
M. M.
,
Meigs
,
J.
,
Mozaffarian
,
D.
,
Mussolino
,
M.
,
Nichol
,
G.
,
Roger
,
V. L.
,
Rosamond
,
W.
,
Sacco
,
R.
,
Sorlie
,
P.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
,
Wong
,
N. D.
, and
Wylie-Rosett
,
J.
, 2010, “
Heart Disease and Stroke Statistics–2010 Update: A Report From the American Heart Association
,”
Circulation
,
121
(
7
), pp.
e46
e215
.
24.
Huang
,
L.
,
Mathieu
,
P. S.
, and
Helmke
,
B. P.
, 2010, “
A Stretching Device for High-Resolution Live-Cell Imaging
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1728
1740
.
25.
Hirschi
,
K. K.
,
Lai
,
L.
,
Belaguli
,
N. S.
,
Dean
,
D. A.
,
Schwartz
,
R. J.
, and
Zimmer
,
W. E.
, 2002, “
Transforming Growth Factor-Beta Induction of Smooth Muscle Cell Phenotype Requires Transcriptional and Post-Transcriptional Control of Serum Response Factor
,”
J. Biol. Chem.
,
277
(
8
), pp.
6287
6295
.
26.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
, and
Vorp
,
D. A.
, 2004, “
An Analysis of the Complete Strain Field Within Flexercell Membranes
,”
J. Biomech.
,
37
(
12
), pp.
1923
1928
.
27.
Brown
,
T. D.
, 2000, “
Techniques for Mechanical Stimulation of Cells in Vitro: A Review
,”
J. Biomech.
,
33
(
1
), pp.
3
14
.
28.
Ohashi
,
T.
,
Masuda
,
M.
,
Matsumoto
,
T.
, and
Sato
,
M.
, 2007, “
Nonuniform Strain of Substrate Induces Local Development of Stress Fibers in Endothelial Cells Under Uniaxial Cyclic Stretching
,”
Clin. Hemorheol. Microcirc.
,
37
(
1–2
), pp.
37
46
.http://iospress.metapress.com/content/ur6m554487681117/http://iospress.metapress.com/content/ur6m554487681117/
29.
Yung
,
Y. C.
,
Vandenburgh
,
H.
, and
Mooney
,
D. J.
, 2009, “
Cellular Strain Assessment Tool (CSAT): Precision-Controlled Cyclic Uniaxial Tensile Loading
,”
J. Biomech.
,
42
(
2
), pp.
178
182
.
30.
Moore
,
J. E.
, Jr.
, 2009, “
Biomechanical Issues in Endovascular Device Design
,”
J. Endovasc. Ther.
,
16
(1 Suppl), pp.
I1
11
.
31.
Humphrey
,
J. D.
, 2008, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
,
50
(
2
), pp.
53
78
.
32.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model. Mechanobiol.
,
3
(
1
), pp.
17
32
.
33.
Hayashi
,
K.
, and
Imai
,
Y.
, 1997, “
Tensile Property of Atheromatous Plaque and an Analysis of Stress in Atherosclerotic Wall
,”
J. Biomech.
,
30
(
6
), pp.
573
579
.
34.
Buck
,
R. C.
, 1980, “
Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum
,”
Exp. Cell Res.
,
127
(
2
), pp.
470
474
.
35.
Dartsch
,
P. C.
,
Hammerle
,
H.
, and
Betz
,
E.
, 1986, “
Orientation of Cultured Arterial Smooth Muscle Cells Growing on Cyclically Stretched Substrates
,”
Acta Anat. (Basel)
,
125
(
2
), pp.
108
113
.
36.
Kanda
,
K.
,
Matsuda
,
T.
, and
Oka
,
T.
, 1992, “
Two-Dimensional Orientational Response of Smooth Muscle Cells to Cyclic Stretching
,”
ASAIO J.
,
38
(
3
), pp.
M382
385
.
37.
Houtchens
,
G. R.
,
Foster
,
M. D.
,
Desai
,
T. A.
,
Morgan
,
E. F.
, and
Wong
,
J. Y.
, 2008, “
Combined Effects of Microtopography and Cyclic Strain on Vascular Smooth Muscle Cell Orientation
,”
J. Biomech.
,
41
(
4
), pp.
762
769
.
38.
Morawietz
,
H.
,
Ma
,
Y. H.
,
Vives
,
F.
,
Wilson
,
E.
,
Sukhatme
,
V. P.
,
Holtz
,
J.
, and
Ives
,
H. E.
, 1999, “
Rapid Induction and Translocation of Egr-1 in Response to Mechanical Strain in Vascular Smooth Muscle Cells
,”
Circ. Res.
,
84
(
6
), pp.
678
687
.http://circres.ahajournals.org/content/84/6/678.longhttp://circres.ahajournals.org/content/84/6/678.long
39.
Birukov
,
K. G.
,
Shirinsky
,
V. P.
,
Stepanova
,
O. V.
,
Tkachuk
,
V. A.
,
Hahn
,
A. W.
,
Resink
,
T. J.
, and
Smirnov
,
V. N.
, 1995, “
Stretch Affects Phenotype and Proliferation of Vascular Smooth Muscle Cells
,”
Mol. Cell. Biochem.
,
144
(
2
), pp.
131
139
.
40.
Butcher
,
J. T.
,
Barrett
,
B. C.
, and
Nerem
,
R. M.
, 2006, “
Equibiaxial Strain Stimulates Fibroblastic Phenotype Shift in Smooth Muscle Cells in an Engineered Tissue Model of the Aortic Wall
,”
Biomaterials
,
27
(
30
), pp.
5252
5258
.
41.
Goldman
,
J.
,
Zhong
,
L.
, and
Liu
,
S. Q.
, 2003, “
Degradation of Alpha-Actin Filaments in Venous Smooth Muscle Cells in Response to Mechanical Stretch
,”
Am. J. Physiol. Heart Circ. Physiol.
,
284
(
5
), pp.
H1839
1847
.http://ajpheart.physiology.org/content/284/5/H1839.longhttp://ajpheart.physiology.org/content/284/5/H1839.long
42.
Schwartz
,
S. M.
, 1997, “
Smooth Muscle Migration in Atherosclerosis and Restenosis
,”
J. Clin. Invest.
,
100
(
11
Suppl), pp.
S87
89
.http://www.jci.org/articles/view/119472http://www.jci.org/articles/view/119472
You do not currently have access to this content.