Changes in muscle fiber orientation across the wall of the left ventricle (LV) cause the apex of the heart to turn 10–15 deg in opposition to its base during systole and are believed to increase stroke volume and lower wall stress in healthy hearts. Studies show that cardiac torsion is sensitive to various disease states, which suggests that it may be an important aspect of cardiac function. Modern imaging techniques have sparked renewed interest in cardiac torsion dynamics, but no work has been done to determine whether mechanically augmented apical torsion can be used to restore function to failing hearts. In this report, we discuss the potential advantages of this approach and present evidence that turning the cardiac apex by mechanical means can displace a clinically significant volume of blood from failing hearts. Computational models of normal and reduced-function LVs were created to predict the effects of applied apical torsion on ventricular stroke work and wall stress. These same conditions were reproduced in anesthetized pigs with drug-induced heart failure using a custom apical torsion device programmed to rotate over various angles during cardiac systole. Simulations of applied 90 deg torsion in a prolate spheroidal computational model of a reduced-function pig heart produced significant increases in stroke work (25%) and stroke volume with reduced fiber stress in the epicardial region. These calculations were in substantial agreement with corresponding in vivo measurements. Specifically, the computer model predicted torsion-induced stroke volume increases from 13.1 to 14.4 mL (9.9%) while actual stroke volume in a pig heart of similar size and degree of dysfunction increased from 11.1 to 13.0 mL (17.1%). Likewise, peak LV pressures in the computer model rose from 85 to 95 mm Hg (11.7%) with torsion while maximum ventricular pressures in vivo increased in similar proportion, from 55 to 61 mm Hg (10.9%). These data suggest that: (a) the computer model of apical torsion developed for this work is a fair and accurate predictor of experimental outcomes, and (b) supra-physiologic apical torsion may be a viable means to boost cardiac output while avoiding blood contact that occurs with other assist methods.

References

References
1.
Buchalter
,
M. B.
,
Weiss
,
J. L.
,
Rogers
,
W. J.
,
Zerhouni
,
E. A.
,
Weisfeldt
,
M. L.
,
Beyar
,
R.
, and
Shapiro
,
E. P.
, 1990, “
Noninvasive Quantification of Left Ventricular Rotational Deformation in Normal Humans using Magnetic Resonance Imaging Myocardial Tagging
,”
Circulation
,
81
, pp.
1236
1244
.
2.
Henson
,
R. E.
,
Song
,
S. K.
,
Pastorek
,
J. S.
,
Ackerman
,
J. J. H.
, and
Lorenz
,
C. H.
, 2000, “
Left Ventricular Torsion is Equal in Mice and Humans
,”
Am. J. Physiol. Heart Circ. Physiol.
,
278
, pp.
H1117
H1123
.
3.
Marcelli
,
E.
,
Plicchi
,
G.
,
Cercenelli
,
L.
, and
Bortolami
,
F.
, 2005, “
First Experimental Evaluation of Cardiac Apex Rotation With an Epicardial Coriolis Force Sensor
,”
ASAIO J.
,
51
, pp.
696
701
.
4.
Helle-Valle
,
T.
,
Crosby
,
J.
,
Edvardsen
,
T.
,
Lyseggen
,
E.
,
Amundsen
,
B. H.
,
Smith
,
H.-J.
,
Rosen
,
B. D.
,
Lima
,
J. A. C.
,
Torp
,
H.
,
Ihlen
,
H.
, and
Smiseth
,
O. A.
, 2005, “
New Noninvasive Method for Assessment of Left Ventricular Rotation. Speckle Tracking Echocardiography
,”
Circulation
,
112
, pp.
3149
3156
.
5.
Lorenz
,
C. H.
,
Pastorek
,
J. S.
, and
Bundy
,
J. M.
, 2000, “
Delineation of Normal Human Left Ventricular Twist Throughout Systole by Tagged Cine Magnetic Resonance Imaging
,”
J. Cardiovasc. Magn. Reson.
,
2
(
2
), pp.
97
108
.
6.
Sengupta
,
P. P.
,
Tajik
,
A. J.
,
Chandrasekaran
,
K.
, and
Khandheria
,
B. K.
, 2008, “
Twist Mechanics of the Left Ventricle: Principles and Application
,”
JACC: Cardiovasc. Imaging
,
1
(
3
), pp.
366
374
.
7.
Nagel
,
E.
,
Stuber
,
M.
,
Lakatos
,
M.
,
Scheidegger
,
M. B.
,
Boesiger
,
P.
, and
Hess
,
O. M.
, 2000, “
Cardiac Rotation and Relaxation After Anterolateral Myocardial Infarction
,”
Coron. Artery Dis.
,
11
(
3
), pp.
261
267
.
8.
Fuchs
,
E.
,
Muller
,
M. F.
,
Oswald
,
H.
,
Thony
,
H.
,
Mohacsi
,
P.
, and
Hess
,
O. M.
, 2004, “
Cardiac Rotation and Relaxation in Patients With Chronic Heart Failure
,”
Eur. J. Heart Fail.
,
6
(
6
), pp.
715
722
.
9.
Yun
,
K. L.
,
Niczyporuk
,
M. A.
,
Daughters
,
G. T.
,
Ingels
,
N. B.
,
Stinson
,
E. B.
,
Alderman
,
E. L.
,
Hansen
,
D. E.
, and
Miller
,
D. C.
, 1991, “
Alterations in Left Ventricular Diastolic Twist Mechanics During Human Cardiac Allograft Rejection
,”
Circulation
,
83
, pp.
962
973
.
10.
Sorger
,
J. M.
,
Wyman
,
B. T.
,
Faris
,
O. P.
,
Hunter
,
W. C.
, and
McVeigh
,
E. R.
, 2003, “
Torsion of the Left Ventricle During Pacing With MRI Tagging
,”
J. Cardiovasc. Magn. Reson.
,
5
(
4
), pp.
521
530
.
11.
Moon
,
M. R.
,
Ingels
,
N. B.
,
Daughters
,
G. T.
,
Stinson
,
E. B.
,
Hansen
,
D. E.
, and
Miller
,
D. C.
, 1994, “
Alterations in Left Ventricular Twist Mechanics With Inotropic Stimulation and Volume Unloading in Human Subjects
,”
Circulation
,
89
, pp.
142
150
.
12.
Kanzakim
,
H.
,
Nakatanim
,
S.
,
Yamadam
,
N.
,
Urayamam
,
S.
,
Miyatakem
,
K.
, and
Kitakaze
,
M.
, 2006, “
Impaired Systolic Torsion in Dilated Cardiomyopathy: Reversal of Apical Rotation at Mid-Systole Characterized With Magnetic Resonance Tagging Method
,”
Basic Res. Cardiol.
,
101
(
6
), pp.
465
70
.
13.
Rademakers
,
F. E.
,
Buchalter
,
M. B.
,
Rogers
,
W. J.
,
Zerhouni
,
E. A.
,
Weisfeldt
,
M. L.
,
Weiss
,
J. L.
, and
Shapiro
,
E. P.
, 1991, “
Dissociation Between Left Ventricular Untwisting and Filling. Accentuation by Catecholamines
,”
Circulation
,
85
, pp.
1572
1581
.
14.
Sandstede
,
J. J.
,
Beer
,
M.
,
Hofmann
,
S.
,
Lipke
,
C.
,
Harre
,
K.
,
Pabst
,
T.
,
Kenn
,
W.
,
Neubauer
,
S.
, and
Hahn
,
D.
, 2000, “
Changes in Left and Right Ventricular Cardiac Function After Valve Replacement for Aortic Stenosis Determined by Cine MR Imaging
,”
J. Magn. Reson. Imaging
,
12
, pp.
240
246
.
15.
Young
,
A. A.
,
Kramer
,
C. M.
,
Ferrari
,
V. A.
,
Axel
,
L.
, and
Reichek
,
N.
, 1994, “
Three-Dimensional Left Ventricular Deformation in Hypertrophic Cardiomyopathy
,”
Circulation
,
90
, pp.
854
867
.
16.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1–2
), pp.
107
128
.
17.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
J. Biomech. Eng.
,
113
(
1
), pp.
42
55
.
18.
Guccione
,
J. M.
,
Costa
,
K. D.
, and
McCulloch
,
A. D.
, 1995, “
Finite-Element Stress Analysis of Left-Ventricular Mechanisms in the Beating Dog Heart
,”
J. Biomech.
,
28
, pp.
1167
1177
.
19.
Pieske
,
B.
,
Sutterlin
,
M.
,
Schmidt-Schweda
,
S.
,
Minami
,
K.
,
Meyer
,
M.
,
Olschewski
,
M.
,
Holubarsch
,
C.
,
Just
,
H.
, and
Hasenfuss
,
G.
, 1996, “
Diminished Post-Rest Potentiation of Contractile Force in Human Dilated Cardiomyopathy
,”
J. Clin. Invest.
,
88
, pp.
765
776
.
20.
Kerckhoffs
,
R. C. P.
,
Neal
,
M.
,
Gu
,
Q.
,
Bassingthwaighte
,
J. B.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
, 2007, “
Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation
,”
Ann. Biomed. Eng.
,
35
, pp.
1
18
.
21.
Monnet
,
E.
, and
Chachques
,
J. C.
, 2005, “
Animal Models of Heart Failure: What is New?
,”
Ann. Thorac. Surg.
,
79
, pp.
1445
1453
.
22.
Ashraf
,
M.
,
Myronenko
,
A.
,
Nguyen
,
T.
,
Inage
,
A.
,
Smith
,
W.
,
Lower
,
R. I.
,
Thiele
,
K.
,
Gibbons Kroeker
,
C. A.
,
Tyberg
,
J. V.
,
Smallhorn
,
J. F.
,
Sahn
,
D. J.
, and
Song
,
X.
, 2010, “
Defining Left Ventricular Apex-to-Base Twist Mechanics Computed From High-Resolution 3D Echocardiography
,”
JACC Cardiovasc. Imaging
,
3
(
3
), pp.
227
234
.
23.
LeGallois
,
C. J. J.
, 1813,
Experience on the Principle of Life
,
Thomas
,
Philadelphia, PA
.
24.
Morshuis
,
M.
,
Schoenbrodt
,
M.
,
Nojiri
,
C.
,
Roefe
,
D.
,
Schulte-Eistrup
,
S.
,
Boergermann
,
J.
,
Gummert
,
J. F.
, and
Arusoglu
,
L.
, 2010, “
DuraHeart Magnetically Levitated Centrifugal Left Ventricular Assist System for Advanced Heart Failure Patients
,”
Expert Rev. Med. Devices
,
7
(
2
), pp.
173
83
.
25.
Greatrex
,
N. A.
,
Timms
,
D. L.
,
Kurita
,
N.
,
Palmer
,
E. W.
, and
Masuzawa
,
T.
, 2010, “
Axial Magnetic Bearing Development for the BiVACOR Rotary BiVAD/TAH
,”
IEEE Trans. Biomed. Eng.
,
57
(
3
), pp.
714
21
.
26.
Antaki
,
J. F.
,
Ricci
,
M. R.
,
Verkaik
,
J. E.
,
Snyder
,
S. T.
,
Maul
,
T. M.
,
Kim
,
J.
,
Paden
,
D. B.
,
Kameneva
,
M. V.
,
Paden
,
B. E.
,
Wearden
,
P. D.
, and
Borovetz
,
H. S.
, 2010, “
PediaFlow Maglev Ventricular Assist Device: A Prescriptive Design Approach
,”
Cardiovasc. Eng.
,
1
(
1
), pp.
104
121
.
27.
Gibber
,
M.
,
Wu
,
Z. J.
,
Chang
,
W. B.
,
Bianchi
,
G.
,
Hu
,
J.
,
Garcia
,
J.
,
Jarvik
,
R.
, and
Griffith
,
B. P.
, 2010, “
In Vivo Experience of the Child-Size Pediatric Jarvik 2000 Heart: Update
,”
ASAIO J.
,
56
(
4
), pp.
369
76
.
28.
Anstadt
,
G. L.
,
Schiff
,
P.
, and
Baue
,
A. E.
, 1966, “
Prolonged Circulatory Support by Direct Mechanical Assistance
,”
Trans. Am. Soc. Artif. Intern. Organs
,
12
, pp.
72
79
.
29.
Melvin
,
D. B.
,
Schima
,
H.
,
Losert
,
U. M.
, and
Wolner
,
E.
, 1996, “
Long-Term Ventricular Wall Actuation: Can and Should it be Systematically Explored?
,”
Artif. Organs
,
20
(
1
), pp.
63
68
.
30.
Kung
,
R. T. V.
, and
Rosenberg
,
M.
, 1999, “
Heart Booster: A Pericardial Support Device
,”
Ann. Thorac. Surg.
,
68
, pp.
764
767
.
31.
Magovern
,
G. J.
, Sr.
, and
Simpson
,
K. A.
, 1996, “
Clinical Cardiomyoplasty: Review of the Ten-Year United States Experience
,”
Ann. Thorac. Surg.
,
61
(
1
), pp.
413
419
.
32.
Oz
,
M. C.
,
Artrip
,
J. H.
, and
Burkhoff
,
D.
, 2002, “
Direct Cardiac Compression Devices
,”
J. Heart Lung Transplant
,
21
, pp.
1049
1055
.
33.
Higano
,
S. T.
,
Oh
,
J. K.
,
Ewy
,
G. A.
, and
Seward
,
J. B.
, 1990, “
The Mechanism of Blood Flow During Closed Chest Cardiac Massage in Humans: Transesophageal Echocardiographic Observations
,”
Mayo Clin. Proc.
,
65
(
11
), pp.
1432
1440
.
34.
Harvey
,
W.
, 1941, “
An Anatomical Disposition on the Motion of the Heart and Blood in Animals
,”
Cardiac Classics
,
F. A.
Willis
and
T. E.
eds.,
Henry Kimpton
,
London, England
, pp.
19
79
.
35.
Sengupta
,
P. P.
,
Tajik
,
A. J.
,
Chandrasekaran
,
K.
, and
Khandheria
,
B. K.
, 2008, “
Twist Mechanics of the Left Ventricle: Principles and Application
,”
JACC: Cardiovasc. Imaging
,
1
(
3
), pp.
366
374
.
36.
Insilicomed, Inc.
, “
Getting Started with Continuity: Material Coordinates
,”
ContinuityPRO User’s Manual
,
Insilicomed, Inc.
,
La Jolla, CA
.
37.
Coghlan
,
C.
, and
Hoffman
,
J.
, 2006, “
Leonardo da Vinci’s Flights of the Mind Must Continue: Cardiac Architecture and the Fundamental Relation of Form and Function Revisited
,”
Eur. J. Cardiothorac. Surg.
,
29S
, pp.
S4
S17
.
38.
Taber
,
L. A.
,
Yang
,
M.
, and
Podszus
,
W.
, 1996, “
Mechanics of Ventricular Torsion
,”
J. Biomech.
,
29
(
6
), pp.
745
752
.
39.
Buckberg
,
G. D.
, 2002, “
Basic Science Review: The Helix and the Heart
,”
J. Thorac. Cardiovasc. Surg.
,
124
(
5
), pp.
863
883
.
40.
Torrent-Guasp
,
F.
,
Kocica
,
M. J.
,
Corno
,
A. F.
,
Komeda
,
M.
,
Carreras-Costa
,
F.
,
Flotats
,
A.
,
Cosin-Aguillar
,
J.
, and
Wen
,
H.
, 2005, “
Towards New Understanding of the Heart Structure and Function
,”
Eur. J. Cardiothorac. Surg.
,
27
, pp.
191
201
.
41.
Nasiraei-Moghaddam
,
A.
, and
Gharib
,
M.
, 2009, “
Evidence for the Existence of a Functional Helical Myocardial Band
,”
Am. J. Physiol. Heart Circ. Physiol.
,
296
(
1
), pp.
H127
H131
.
42.
LeGrice
,
I.
,
Hunter
,
P.
,
Young
,
A.
, and
Smaill
,
B.
, 2001, “
The Architecture of the Heart: A Data-Based Model
,”
Philos. Trans. R. Soc. London
,
359
, pp.
1217
1232
.
43.
Lumens
,
J.
,
Delhaas
,
T.
,
Kirn
,
B.
, and
Arts
,
T.
, 2009, “
Three-Wall Segment (TriSeg) Model Describing Mechanics and Hemodynamics of Ventricular Interaction
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2234
2255
.
44.
Rice
,
J. J.
,
Wang
,
F.
,
Bers
,
D. M.
, and
de Tombe
,
P. P.
, 2008, “
Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations
,”
Biophys. J.
,
95
(
5
), pp.
2368
2390
.
45.
Campbell
,
S. G.
,
Lionetti
,
F. V.
,
Campbell
,
K. S.
, and
McCulloch
,
A. D.
, 2010, “
Coupling of Adjacent Tropomyosins Enhances Cross-Bridge-Mediated Cooperative Activation in a Markov Model of the Cardiac Thin Filament
,”
Biophys. J.
,
98
(
10
), pp.
2254
2264
.
46.
Criscione
,
J.
, 2008, “
Kinematics Framework Optimized for Deformation, Growth, and Remodeling in Vascular Organs
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
285
293
.
47.
Holzapfel
,
G. A.
, and
Ogden
,
R.W.
, 2009, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
Philos. Trans. R. Soc. London
,
367
(
1902
), pp.
3445
3475
.
48.
Göktepe
,
S.
,
Acharya
,
S. N. S.
,
Wong
,
J.
, and
Kuhl
,
E.
, 2011, “
Computational Modeling of Passive Myocardium
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
1
), pp.
1
12
.
You do not currently have access to this content.