Although left ventricular assist devices (LVADs) have had success in supporting severe heart failure patients, thrombus formation within these devices still limits their long term use. Research has shown that thrombosis in the Penn State pulsatile LVAD, on a polyurethane blood sac, is largely a function of the underlying fluid mechanics and may be correlated to wall shear rates below 500 s−1. Given the large range of heart rate and systolic durations employed, in vivo it is useful to study the fluid mechanics of pulsatile LVADs under these conditions. Particle image velocimetry (PIV) was used to capture planar flow in the pump body of a Penn State 50 cubic centimeters (cc) LVAD for heart rates of 75–150 bpm and respective systolic durations of 38–50%. Shear rates were calculated along the lower device wall with attention given to the uncertainty of the shear rate measurement as a function of pixel magnification. Spatial and temporal shear rate changes associated with data collection frequency were also investigated. The accuracy of the shear rate calculation improved by approximately 40% as the resolution increased from 35 to 12 μm/pixel. In addition, data collection in 10 ms, rather than 50 ms, intervals was found to be preferable. Increasing heart rate and systolic duration showed little change in wall shear rate patterns, with wall shear rate magnitude scaling by approximately the kinematic viscosity divided by the square of the average inlet velocity, which is essentially half the friction coefficient. Changes in in vivo operating conditions strongly influence wall shear rates within our device, and likely play a significant role in thrombus deposition. Refinement of PIV techniques at higher magnifications can be useful in moving towards better prediction of thrombosis in LVADs.

References

1.
D.
Lloyd-Jones
,
R. J.
Adams
,
T. M.
Brown
,
M.
Carnethon
,
S.
Dai
,
G. De
Simone
,
T. B.
Ferguson
,
E.
Ford
,
K.
Furie
,
C.
Gillespie
,
A.
Go
,
K.
Greenlund
,
N.
Haase
,
S.
Hailpern
,
P. M.
Ho
,
V.
Howard
,
B.
Kissela
,
S.
Kittner
,
D.
Lackland
,
L.
Lisabeth
,
A.
Marelli
,
M. M.
McDermott
,
J.
Meigs
,
D.
Mozaffarian
,
M.
Mussolino
,
G.
Nichol
,
V. L.
Roger
,
W.
Rosamond
,
R.
Sacco
,
P.
Sorlie
,
R.
Stafford
,
T.
Thom
,
S.
Wasserthiel-Smoller
,
N. D.
Wong
, and
J.
Wylie-Rosett
, 2010, “
Executive Summary: Heart Disease and Stroke Statistics – 2010 Update: A Report from the American Heart Association
,”
Circulation
,
121
, pp.
948
954
.
2.
Shreenivas
,
S.
,
Rame
,
J.
, and
Jessup
,
M.
, 2010, “
Mechanical Circulatory Support as a Bridge to Transplant or for Destination Therapy
,”
Curr. Heart Fail. Rep.
,
7
, pp.
159
166
.
3.
Stevenson
,
L.
,
Miller
,
L.
,
Desvigne-Nickens
,
P.
,
Ascheim
,
D.
,
Parides
,
M.
,
Renlund
,
D.
,
Oren
,
R.
,
Krueger
,
S.
,
Costanzo
,
M.
,
Wann
,
S.
,
Levitan
,
R.
, and
Mancini
,
D.
, 2004, “
Left Ventricular Assist Device as Destination for Patients Undergoing Intravenous Inotropic Therapy
,”
Circulation
,
110
, pp.
975
981
.
4.
Lietz
,
K.
,
Long
,
J.
,
Kfoury
,
A.
,
Slaughter
,
M.
,
Silver
,
M.
,
Milano
,
C.
,
Rogers
,
J.
,
Naka
,
Y.
,
Mancini
,
D.
, and
Miller
,
L.
, 2007, “
Outcomes of Left Ventricular Assist Device Implantation as Destination Therapy in the Post-REMATCH Era
,”
Circulation
,
116
, pp.
497
505
.
5.
Daneshmand
,
M.
,
Rajagopal
,
K.
,
Lima
,
B.
,
Khorram
,
N.
,
Blue
,
L.
,
Lodge
,
A.
,
Hernzndez
,
A.
,
Rogers
,
J.
, and
Milano
,
C.
, 2010, “
Left Ventricular Assist Device Destination Therapy Versus Extended Criteria Cardiac Transplant
,”
Ann. Thorac. Surg.
,
89
, pp.
1205
1210
.
6.
Deutsch
,
S.
,
Tarbell
,
J. M.
,
Manning
,
K. B.
,
Rosenberg
,
G.
,
Fontaine
,
A. A.
, 2006, “
Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
65
86
.
7.
Gaines
,
W.
,
Pierce
,
W.
,
Donachy
,
J.
,
Rosenberg
,
G.
,
Landis
,
D.
,
Richenbacher
,
W.
, and
Waldhausen
,
J.
, 1985, “
The Pennsylvania State University Paracorporeal Ventricular Assist Pump: Optimal Methods of Use
,”
World J. Surg.
,
9
, pp.
47
53
.
8.
Mehta
,
S.
,
Pae
,
W.
,
Rosenberg
,
G.
,
Snyder
,
A.
,
Weiss
,
W.
,
Lewis
,
J.
,
Frank
,
D.
,
Thompson
,
J.
, and
Pierce
,
W.
, 2001, “
The LionHeart LVD-2000: a Completely Implanted Left Ventricular Assist Device for Chronic Circulatory Support
,”
Ann. Thorac. Surg.
,
71
, pp.
156
161
.
9.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Fluid Dynamic Analysis of the 50cc Penn State Artificial Heart Under Physiological Operating Conditions Using Particle Image Velocimetry
,”
J. Biomech. Eng.
,
126
, pp.
585
593
.
10.
Yamanaka
,
H.
,
Rosenberg
,
G.
,
Weiss
,
W.
,
Snyder
,
A.
,
Zapanta
,
C.
,
Pae
,
W.
, and
Siedlecki
,
C.
, 2003, “
A Multiscale Surface Evaluation of Thrombosis in Left Ventricular Assist Systems
,”
ASAIO J.
,
49
, p.
222
.
11.
Hubbell
,
J.
, and
McIntire
,
L.
, 1986, “
Visualization and Analysis of Mural Thrombogenesis on Collagen, Polyurethane and Nylon
,”
Biomaterials
,
7
, pp.
354
363
.
12.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Correlation of In Vivo Clot Deposition with the Flow Characteristics in the 50cc Penn State Artificial Heart: a Preliminary Study
,”
ASAIO J.
,
50
, pp.
537
542
.
13.
Kreider
,
J.
,
Manning
,
K. B.
,
Oley
,
L. A.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2006, “
The 50cc Penn State LVAD: a Parametric Study of Valve Orientation Flow Dynamics
,”
ASAIO J.
,
52
, pp.
123
131
.
14.
Kreider
,
J.
, 2006, “
Flow Field Measurement in the Penn State 50 cc LVAD Using Particle Image Velocimetry
,” M.S. thesis, The Pennsylvania State University.
15.
Nanna
,
J. C.
,
Wivholm
,
J.A.
,
Deutsch
,
S.
, and
Manning
,
K. B
, 2011, “
Flow Field Study Comparing Design Iterations of a 50 cc Left Ventricular Assist Device
,”
ASAIO J.
, In Press.
16.
Oley
,
L. A.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2005, “
Off-Design Considerations of the 50 cc Penn State Ventricular Assist Device
,”
Artif. Organs
,
29
, pp.
378
386
.
17.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
Tarbell
,
J. M.
, 2003, “
Diaphragm Motion Affects Flow Patterns in an Artificial Heart
,”
Artif. Organs
,
27
, pp.
1102
1109
.
18.
Rosenberg
,
G.
,
Phillips
,
W. M.
,
Landis
,
D. L.
, and
Pierce
,
W. S.
, 1981, “
Design and Evaluation of the Pennsylvania State University Mock Circulatory System
,”
ASAIO J.
,
4
, pp.
41
49
.
19.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2004, “
Wall Shear-Rate Estimation Within the 50cc Penn State Artificial Heart Using Particle Image Velocimetry
,”
J. Biomech. Eng.
,
126
, pp.
430
437
.
20.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer-Verlag
,
Berlin
.
21.
Cooper
,
B. T.
,
Roszelle
,
B. N.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
, 2008, “
The 12 cc Penn State Pulsatile Ventricular Assist Device: Fluid Dynamics Associated with Valve Selection
,”
J. Biomech. Eng.
,
130
,
041019
.
You do not currently have access to this content.