Ongoing investigations are exploring the biomechanical properties of isolated and suspended biological cells in pursuit of understanding single-cell mechanobiology. An optical tweezer with minimal applied laser power has positioned biologic cells at the geometric center of a microfluidic cross-junction, creating a novel optohydrodynamic trap. The resulting fluid flow environment facilitates unique multiaxial loading of single cells with site-specific normal and shear stresses resulting in a physical albeit extensional state. A recent two-dimensional analysis has explored the cytoskeletal strain response due to these fluid-induced stresses [Wilson and Kohles, 2010, “Two-Dimensional Modeling of Nanomechanical Stresses-Strains in Healthy and Diseased Single-Cells During Microfluidic Manipulation,” J Nanotechnol Eng Med, 1(2), p. 021005]. Results described a microfluidic environment having controlled nanometer and piconewton resolution. In this present study, computational fluid dynamics combined with multiphysics modeling has further characterized the applied fluid stress environment and the solid cellular strain response in three dimensions to accompany experimental cell stimulation. A volumetric stress-strain analysis was applied to representative living cell biomechanical data. The presented normal and shear stress surface maps will guide future microfluidic experiments as well as provide a framework for characterizing cytoskeletal structure influencing the stress to strain response.

1.
Hunt
,
T. P.
, and
Westervelt
,
R. M.
, 2006, “
Dielectrophoresis Tweezers for Single Cell Manipulation
,”
Biomed. Microdevices
1387-2176,
8
(
3
), pp.
227
230
.
2.
Evander
,
M.
,
Johansson
,
L.
,
Lilliehorn
,
T.
,
Piskur
,
J.
,
Lindvall
,
M.
,
Johansson
,
S.
,
Almqvist
,
M.
,
Laurell
,
T.
, and
Nilsson
,
J.
, 2007, “
Noninvasive Acoustic Cell Trapping in a Microfluidic Perfusion System for Online Bioassays
,”
Anal. Chem.
0003-2700,
79
(
7
), pp.
2984
2991
.
3.
Lutz
,
B. R.
,
Chen
,
J.
, and
Schwartz
,
D. T.
, 2006, “
Hydrodynamic Tweezers: 1. Noncontact Trapping of Single Cells Using Steady Streaming Microeddies
,”
Anal. Chem.
0003-2700,
78
(
15
), pp.
5429
5435
.
4.
Walker
,
L. M.
,
Holm
,
A.
,
Cooling
,
L.
,
Maxwell
,
L.
,
Oberg
,
A.
,
Sundqvist
,
T.
, and
El Haj
,
A. J.
, 1999, “
Mechanical Manipulation of Bone and Cartilage Cells With Optical Tweezers
,”
FEBS Lett.
0014-5793,
459
, pp.
39
42
.
5.
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
Cell and Molecular Mechanics of Biological Materials
,”
Nature Mater.
1476-1122,
2
(
11
), pp.
715
725
.
6.
Nève
,
N.
,
Kohles
,
S. S.
,
Winn
,
S. R.
, and
Tretheway
,
D. C.
, 2010, “
Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers
,”
Cell Mol Bioeng
,
3
(
3
), pp.
213
228
.
7.
Schmid-Schönbein
,
H.
,
Wells
,
R.
, and
Goldstone
,
J.
, 1969, “
Influence of Deformability of Human Red Cells Upon Blood Viscosity
,”
Circ. Res.
0009-7330,
25
, pp.
131
143
.
8.
Bull
,
B.
,
Feo
,
C.
, and
Bessis
,
M.
, 1983, “
Behavior of Elliptocytes Under Shear Stress in the Rheoscope and Ektacytometer
,”
Cytometry
0196-4763,
3
(
4
), pp.
300
304
.
9.
Kaneta
,
T.
,
Makihara
,
J.
, and
Imasaka
,
T.
, 2001, “
An ‘Optical Channel’: A Technique for the Evaluation of Biological Cell Elasticity
,”
Anal. Chem.
0003-2700,
73
(
24
), pp.
5791
5795
.
10.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Mahmood
,
H.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Käs
,
J.
, 2001, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
0006-3495,
81
(
2
), pp.
767
784
.
11.
Sleep
,
J.
,
Wilson
,
D.
,
Simmons
,
R.
, and
Gratzer
,
W.
, 1999, “
Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study
,”
Biophys. J.
0006-3495,
77
(
6
), pp.
3085
3095
.
12.
Loening
,
A. M.
,
James
,
I. E.
,
Levenston
,
M. E.
,
Badger
,
A. M.
,
Frank
,
E. H.
,
Kurz
,
B.
,
Nuttall
,
M. E.
,
Hung
,
H. -H.
,
Blake
,
S. M.
,
Grodzinsky
,
A. J.
, and
Lark
,
M. W.
, 2000, “
Injurious Mechanical Compression of Bovine Articular Cartilage Induces Chondrocyte Apoptosis
,”
Arch. Biochem. Biophys.
0003-9861,
381
(
2
), pp.
205
212
.
13.
Kurz
,
B.
,
Jin
,
M.
,
Patwari
,
P.
,
Cheng
,
D. M.
,
Lark
,
M. W.
, and
Grodzinsky
,
A. J.
, 2001, “
Biosynthetic Response and Mechanical Properties of Articular Cartilage After Injurious Compression
,”
J. Orthop. Res.
0736-0266,
19
, pp.
1140
1146
.
14.
Patwari
,
P.
,
Cook
,
M. N.
,
DiMicco
,
M. A.
,
Blake
,
S. M.
,
James
,
I. E.
,
Kumar
,
S.
,
Cole
,
A. A.
,
Lark
,
M. W.
, and
Grodzinsky
,
A. J.
, 2003, “
Proteogylcan Degradation After Injurious Compression of Bovine and Human Articular Cartilage In Vitro: Interaction With Exogenous Cytokines
,”
Arthritis Rheum.
0004-3591,
48
, pp.
1292
1301
.
15.
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2010, “
A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Static Nanomechanical Stimulation in a Cartilage Biokinetics Model
,”
J Nanotechnol Eng Med.
,
1
(
3
), p.
031005
.
16.
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2010, “
Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis
,”
J Nanotechnol Eng Med.
,
1
(
4
), p.
041001
.
17.
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2010, “
A Cell-Matrix Model of Anabolic and Catabolic Dynamics During Cartilage Biomolecule Regulation
,”
Int J Comp Healthcare
, in press.
18.
Nève
,
N.
,
Lingwood
,
J. K.
,
Zimmerman
,
J.
,
Kohles
,
S. S.
, and
Tretheway
,
D. C.
, 2008, “
The μPIVOT: An Integrated Particle Image Velocimeter and Optical Tweezers Instrument for Microenvironment Investigations
,”
Meas. Sci. Technol.
0957-0233,
19
(
9
), p.
095403
.
19.
Kohles
,
S. S.
,
Nève
,
N.
,
Zimmerman
,
J. D.
, and
Tretheway
,
D. C.
, 2009, “
Stress Analysis of Microfluidic Environments Designed for Isolated Biological Cell Investigations
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
12
), p.
121006
.
20.
Leal
,
L. G.
, 2007,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University Press
,
New York
.
21.
Wilson
,
Z. D.
, and
Kohles
,
S. S.
, 2010, “
Two-Dimensional Modeling of Nanomechanical Stresses-Strains in Healthy and Diseased Single-Cells During Microfluidic Manipulation
,”
J Nanotechnol Eng Med
,
1
(
2
), p.
021005
.
22.
Papanastasiou
,
T. C.
,
Georgio
,
G. C.
, and
Alexandrou
,
A. N.
, 2000,
Viscous Fluid Flow
,
CRC
,
New York
.
23.
Cook
,
R. D.
, and
Young
,
W. C.
, 1985,
Advanced Mechanics of Materials
,
Macmillan Publishing Company
,
New York
.
24.
Langhaar
,
H. L.
, 1962,
Energy Methods in Applied Mechanics
,
Wiley
,
New York
.
25.
Beer
,
F. P.
,
Johnston
,
E. R.
, Jr.
, and
DeWolf
,
J. T.
, 2002,
Mechanics of Materials
,
3rd ed.
,
McGraw-Hill
,
Boston, TX
.
26.
Nève
,
N.
, 2010, “
The MicroPIVOT: An Integrated Particle Image Velocimeter and Optical Tweezers Instrument for Microscale Investigations
,” Ph.D. thesis, Portland State University, Portland, OR.
27.
Jaasma
,
M.
,
Jackson
,
W.
,
Tang
,
R.
, and
Keaveny
,
T.
, 2007, “
Adaptation of Cellular Mechanical Behavior to Mechanical Loading for Osteoblastic Cells
,”
J. Biomech.
0021-9290,
40
(
9
), pp.
1938
1945
.
28.
Su
,
S. S.
, and
Schmid-Schönbein
,
G. W.
, 2008, “
Fluid Stresses on the Membrane of Migrating Leukocytes
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
298
307
.
29.
Wilkes
,
R. P.
, and
Athanasiou
,
A. K.
, 1996, “
The Intrinsic Incompressibility of Osteoblast-Like Cells
,”
Tissue Eng.
1076-3279,
2
(
3
), pp.
167
181
.
30.
Alandt
,
N.
,
Andrews
,
P.
,
Zimmerman
,
J.
,
Tretheway
,
D. C.
, and
Kohles
,
S. S.
, 2008, “
Capstone Design of a Thermally Regulated Microfluidic Culture Environment for Cell Biomechanical Studies
,”
Columbia-Willamette Chapter Student Research Symposium
, Sigma Xi Scientific Honor Society, Portland, OR.
31.
Wirtz
,
D.
, 2009, “
Particle-Tracking Microrheology of Living Cells: Principles and Applications
,”
Annu Rev Biophys.
,
38
, pp.
301
326
.
32.
Liu
,
Y.
,
Sonek
,
G. J.
,
Berns
,
M. W.
, and
Tromberg
,
B. J.
, 1996, “
Physiological Monitoring of Optically Trapped Cells: Assessing the Effects of Confinement by 1064-nm Laser Tweezers Using Microfluorometry
,”
Biophys. J.
0006-3495,
71
(
4
), pp.
2158
2167
.
33.
Herant
,
M.
,
Marganski
,
W. A.
, and
Dembo
,
M.
, 2003, “
The Mechanics of Neutrophils: Synthetic Modeling of Three Experiments
,”
Biophys. J.
0006-3495,
84
(
5
), pp.
3389
3413
.
34.
Zeng
,
X.
,
Li
,
S.
, and
Kohles
,
S. S.
, “
Multiscale Biomechanical Modeling of Stem Cell-Extracellular Matrix Interactions
,”
Advances in Cell Mechanics
,
S.
Li
and
B.
Sun
, eds.,
Springer Higher Education Press
,
New York
, in press.
35.
Kim
,
W.
,
Tretheway
,
D. C.
, and
Kohles
,
S. S.
, 2009, “
An Inverse Method for Predicting Tissue-Level Mechanics From Cellular Mechanical Input
,”
J. Biomech.
0021-9290,
42
(
3
), pp.
395
399
.
You do not currently have access to this content.