This paper presents a novel computer-aided modeling of 3D tissue scaffolds with a controlled internal architecture. The complex internal architecture of scaffolds is biomimetically modeled with controlled micro-architecture to satisfy different and sometimes conflicting functional requirements. A functionally gradient porosity function is used to vary the porosity of the designed scaffolds spatially to mimic the functionality of tissues or organs. The three-dimensional porous structures of the scaffold are geometrically partition into functionally uniform porosity regions with a novel offsetting operation technique described in this paper. After determining the functionally uniform porous regions, an optimized deposition-path planning is presented to generate the variational internal porosity architecture with enhanced control of interconnected channel networks and continuous filament deposition. The presented methods are implemented, and illustrative examples are presented in this paper. Moreover, a sample optimized tool path for each example is fabricated layer-by-layer using a micronozzle biomaterial deposition system.

1.
Palsson
,
B. O.
, and
Bhatia
,
S. N.
, 2003,
Tissue Engineering
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Sogutlu
,
S.
, and
Koc
,
B.
, 2007, “
Stochastic Modeling of Tissue Engineering Scaffolds With Varying Porosity Levels
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
661
670
.
3.
Lin
,
C. Y.
,
Kikuchi
,
N.
, and
Hollister
,
S. J.
, 2004, “
A Novel Method for Biomaterial Internal Architecture Design to Match Bone Plastic Properties With Desired Porosity
,”
J. Biomech.
0021-9290,
37
, pp.
623
636
.
4.
Davis
,
M. E.
,
Hsieh
,
P. C.
,
Grodzinsky
,
A. J.
, and
Lee
,
R. T.
, 2005, “
Custom Design of the Cardiac Microenvironment With Biomaterials
,”
Circ. Res.
0009-7330,
97
, pp.
8
15
.
5.
Byrne
,
D. P.
,
Lacroix
,
D.
,
Planell
,
J. A.
,
Kelly
,
D. J.
, and
Prendergast
,
P. J.
, 2007, “
Simulation of Tissue Differentiation in a Scaffold as a Function of Porosity, Young’s Modulus and Dissolution Rate: Application of Mechanobiological Models in Tissue Engineering
,”
Biomaterials
0142-9612,
28
, pp.
5544
5554
.
6.
Gomez
,
C.
, 2007, “
A Unit Cell Based Multi-Scale Modeling and Design Approach for Tissue Engineered Scaffolds
,” Ph.D. thesis, Mechanical Engineering Department, Drexel University, Pennsylvania, USA.
7.
Kalita
,
S. J.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
, and
Hosick
,
H. L.
, 2003, “
Development of Controlled Porosity Polymerceramic Composite Scaffolds Via Fused Deposition Modeling
,”
Mater. Sci. Eng., C
0928-4931,
23
, pp.
611
620
.
8.
Leong
,
K. F.
,
Chua
,
C. K.
,
Sudarmadji
,
N.
, and
Yeong
,
W. Y.
, 2008, “
Engineering Functionally Graded Tissue Engineering Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
1
(
2
), pp.
140
152
.
9.
Hollister
,
S. J.
, and
Lin
,
C. Y.
, 2007, “
Computational Design of Tissue Engineering Scaffolds
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
(
31–32
), pp.
2991
2998
.
10.
Hollister
,
S. J.
,
Maddox
,
R. D.
, and
Taboas
,
J. M.
, 2002, “
Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints
,”
Biomaterials
0142-9612,
23
, pp.
4095
4103
.
11.
Wettergreen
,
M. A.
,
Bucklen
,
B. S.
,
Starly
,
B.
,
Yuksel
,
E.
,
Sun
,
W.
, and
Liebschner
,
M. A. K.
, 2005, “
Creation of a Unit Block Library of Architectures for Use in Assembled Scaffold Engineering
,”
Comput.-Aided Des.
0010-4485,
37
, pp.
1141
1149
.
12.
Wettergreen
,
M. A.
,
Bucklen
,
B. S.
,
Sun
,
W.
, and
Liebschner
,
M. A. K.
, 2005, “
Computer-Aided Tissue Engineering of a Human Vertebral Body
,”
Ann. Biomed. Eng.
0090-6964,
33
(
10
), pp.
1333
1343
.
13.
Hutmacher
,
D. W.
,
Schantz
,
J. T.
,
Lam
,
C. X. F.
,
Tan
,
K. C.
, and
Lim
,
T. C.
, 2007, “
State of the Art and Future Directions of Scaffold-Based Bone Engineering From a Biomaterials Perspective
,”
J. Tissue Eng. Regener. Med.
1932-6254,
1
, pp.
245
260
.
14.
Ng
,
K. W.
, and
Hutmacher
,
D. W.
, 2006, “
Reduced Contraction of Skin Equivalent Engineered Using Cell Sheets Cultured in 3D Matrices
,”
Biomaterials
0142-9612,
27
, pp.
4591
4598
.
15.
Park
,
S.
,
Kim
,
G.
,
Jeon
,
Y. C.
,
Koh
,
Y.
, and
Kim
,
W.
, 2009, “
3D Polycaprolactone Scaffolds With Controlled Pore Structure Using a Rapid Prototyping System
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
20
, pp.
229
234
.
16.
Taboas
,
J. M.
,
Maddox
,
R. D.
,
Krebsbach
,
P. H.
, and
Hollister
,
S. J.
, 2003, “
Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymerceramic Scaffolds
,”
Biomaterials
0142-9612,
24
(
1
), pp.
181
194
.
17.
Karande
,
T. S.
, 2007, “
Effect of Scaffold Architecture on Diffusion of Oxygen in Tissue Engineering Constructs
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
18.
Nazarov
,
R.
,
Jin
,
H. -J.
, and
Kaplan
,
D. L.
, 2004, “
Porous 3D Scaffolds From Regenerated Silk Fibroin
,”
Biomacromolecules
1525-7797,
5
(
3
), pp.
718
726
.
19.
Zhang
,
J.
,
Wu
,
L.
,
Jing
,
D.
, and
Ding
,
J.
, 2005, “
A Comparative Study of Porous Scaffolds With Cubic and Spherical Macropores
,”
Polymer
0032-3861,
46
, pp.
4979
4985
.
20.
Park
,
S. -N.
,
Park
,
J. -C.
,
Kim
,
H. O.
,
Song
,
M. J.
, and
Suh
,
H.
, 2002, “
Characterization of Porous Collagen/Hyaluronic Acidscaffold Modified by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Cross-Linking
,”
Biomaterials
0142-9612,
23
(
4
), pp.
1205
1212
.
21.
Li
,
M.
,
Wu
,
Z.
,
Zhang
,
C.
,
Lu
,
S.
,
Yan
,
H.
,
Huang
,
D.
, and
Ye
,
H.
, 2001, “
Study on Porous Silk Fibroin Materials. II. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials
,”
J. Appl. Polym. Sci.
0021-8995,
79
, pp.
2192
2199
.
22.
Lv
,
Q.
, and
Feng
,
Q.
, 2006, “
Preparation of 3-D Regenerated Fibroin Scaffolds With Freeze Drying Method and Freeze Drying/Foaming Technique
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
17
, pp.
1349
1356
.
23.
Karageorgiou
,
V.
, and
Kaplan
,
D.
, 2005, “
Porosity of 3D Biomaterial Scaffolds and Osteogenesis
,”
Biomaterials
0142-9612,
26
, pp.
5474
5491
.
24.
Shor
,
L.
,
Guceri
,
S.
,
Wen
,
X.
,
Gandhi
,
M.
, and
Sun
,
W.
, 2007, “
Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions In Vitro
,”
Biomaterials
0142-9612,
28
, pp.
5291
5297
.
25.
Sachlos
,
E.
,
Reis
,
N.
,
Ainsley
,
C.
,
Derby
,
B.
, and
Czernuszka
,
J. T.
, 2003, “
Novel Collagen Scaffolds With Predefined Internal Morphology Made by Solid Freeform Fabrication
,”
Biomaterials
0142-9612,
24
(
8
), pp.
1487
1497
.
26.
Wang
,
F.
,
Shor
,
L.
,
Darling
,
A.
,
Khalil
,
S.
,
Sun
,
W.
,
Gceri
,
S.
, and
Lau
,
A.
, 2004, “
Precision Extruding Deposition and Characterization of Cellular Poly-E-Caprolactone Tissue Scaffolds
,”
Rapid Prototyping J.
1355-2546,
10
(
1
), pp.
42
49
.
27.
Gomez
,
C.
,
Shokoufandeh
,
A.
, and
Sun
,
W.
, 2007, “
Unit-Cell Based Design and Modeling in Tissue Engineering Applications
,”
Comput.-Aided Des.
0010-4485,
4
(
5
), pp.
649
657
.
28.
Ozbolat
,
I. T.
,
Marchany
,
M.
,
Gardella
,
J. A.
, Jr.
,
Bright
,
F. V.
,
Cartwright
,
A. N.
,
Hard
,
R.
,
Hicks
,
W. L.
, and
Koc
,
B.
, 2009, “
Feature-Based Design of Bio-Degradable Micro-Patterned Structures
,”
Comput.-Aided Des.
0010-4485,
6
(
5
), pp.
661
671
.
29.
Shin
,
H.
,
Yoo
,
S. K.
,
Cho
,
S. K.
, and
Chung
,
W. H.
, 2003, “
Directional Offset of a Spatial Curve for Practical Engineering Design
,”
Computational Science and Its Applications
,
V.
Kumar
,
M. L.
Gavrilova
, and
C. J.-K.
Tan
, eds.,
Springer
,
Berlin, Heidelberg, New York
, pp.
711
720
.
30.
Koc
,
B.
, and
Lee
,
Y. -S.
, 2002, “
Non-Uniform Offsetting and Hollowing Objects by Using Biarcs Fitting for Rapid Prototyping Processes
,”
Comput Ind.
0166-3615,
47
, pp.
1
23
.
31.
Khalil
,
S.
, and
Sun
,
W.
, 2007, “
Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs
,”
Mater. Sci. Eng., C
0928-4931,
27
, pp.
469
478
.
32.
Agrawal
,
C. M.
,
Mckinney
,
J. S.
,
Lanctot
,
D. C.
, and
Athanasiou
,
K. A.
, 2000, “
Effects of Fluid Flow on the In Vitro Degradation Kinetics of Biodegradable Scaffolds for Tissue Engineering
,”
Biomaterials
0142-9612,
21
(
23
), pp.
2443
2452
.
33.
Mardle
,
S.
, and
Pascoe
,
S.
, 1999, “
An Overview of Genetic Algorithms for the Solution of Optimization Problems
,”
Computers in Higher Education Economics Review
,
13
(
1
), pp.
16
20
.
34.
36.
Ribeiro
,
C.
,
Barrias
,
C.
, and
Barbosa
,
M.
, 2004, “
Calcium Phosphate-Alginate Microspheres as Enzyme Delivery Matrices
,”
Biomaterials
0142-9612,
25
(
18
), pp.
4363
4373
.
This content is only available via PDF.
You do not currently have access to this content.