The costal-cartilage in the human ribcage is a composite structure consisting of a cartilage substance surrounded by a fibrous, tendonlike perichondrium. Current computational models of the human ribcage represent the costal-cartilage as a homogeneous material, with no consideration for the mechanical contributions of the perichondrium. This study sought to investigate the role of the perichondrium in the structural mechanical behavior of the costal-cartilage. Twenty-two specimens of postmortem human costal-cartilage were subjected to cantileveredlike loading both with the perichondrium intact and with the perichondrium removed. The test method was chosen to approximate the cartilage loading that occurs when a concentrated, posteriorly directed load is applied to the midsternum. The removal of the perichondrium resulted in a statistically significant (two-tailed Student’s t-test, p0.05) decrease of approximately 47% (95% C.I. of 35–58%) in the peak anterior-posterior reaction forces generated during the tests. When tested with the perichondrium removed, the specimens also exhibited failure in the cartilage substance in the regions that experienced tension from bending. These results suggest that the perichondrium does contribute significantly to the stiffness and strength of the costal-cartilage structure under this type loading, and should be accounted for in computational models of the thorax and ribcage.

1.
Kent
,
R.
,
Woods
,
W.
, and
Bostrom
,
O.
, 2008, “
Fatality Risk and the Presence of Rib Fractures
,”
Annals of Advances in Automotive Medicine
,
52
, pp.
73
84
.
2.
Murakami
,
D.
,
Kobayashi
,
S.
,
Torigaki
,
T.
, and
Kent
,
R.
, 2006, “
Finite Element Analysis of Hard and Soft Tissue Contributions to Thoracic Response: Sensitivity Analysis of Fluctuations in Boundary Conditions
,”
Stapp Car Crash J.
,
50
, pp.
169
189
.
3.
Oyen
,
M. L.
,
Murakami
,
D.
, and
Kent
,
R.
, 2005, “
Mechanical Characterization of Costal Cartilage
,”
33rd Proceedings, International Workshop on Human Subjects for Biomechanical Research
.
4.
Feng
,
J.
,
Hu
,
T.
,
Liu
,
W.
,
Zhang
,
S.
,
Tang
,
Y.
,
Chen
,
R.
,
Jiang
,
X.
, and
Wei
,
F.
, 2001, “
The Biomechanical, Morphologic, and Histochemical Properties of the Costal Cartilages in Children With Pectus Excavatum
,”
J. Pediatr. Surg.
0022-3468,
36
(
12
), pp.
1770
1776
.
5.
Abrahams
,
M.
, and
Duggan
,
T. C.
, 1964, “
The Mechanical Characteristics of Costal Cartilage
,”
Symposium on Biomechanics and Related Bioengineering Topics
, pp.
285
300
.
6.
Roy
,
R.
,
Kohles
,
S. S.
,
Zaporojan
,
V.
,
Peretti
,
G. M.
,
Randolph
,
M. A.
,
Xu
,
J.
, and
Bonassar
,
L. J.
, 2004, “
Analysis of Bending Behavior of Native and Engineered Auricular and Costal Cartilage
,”
J. Biomed. Mater. Res. Part A
1549-3296,
68
(
4
), pp.
597
602
.
7.
Guo
,
B. Y.
,
Liao
,
D. H.
,
Li
,
X. Y.
,
Zeng
,
Y. J.
, and
Yang
,
Q. H.
, 2007, “
Age and Gender Related Changes in Biomechanical Properties of Healthy Human Costal Cartilage
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
3
), pp.
292
297
.
8.
Mattice
,
J. M.
,
Lau
,
A. G.
,
Oyen
,
M. L.
, and
Kent
,
R. W.
, 2006, “
Spherical Indentation Load-Relaxation of Soft Biological Tissues
,”
J. Mater. Res.
0884-2914,
21
(
8
), pp.
2003
2010
.
9.
Lau
,
A.
,
Oyen
,
M. L.
,
Kent
,
R. W.
,
Murakami
,
D.
, and
Torigaki
,
T.
, 2008, “
Indentation Stiffness of Aging Human Costal Cartilage
,”
Acta Biomater.
1742-7061,
4
(
1
), pp.
97
103
.
10.
Lizee
,
E.
,
Robin
,
S.
,
Song
,
E.
,
Bertholon
,
N.
,
Le Croz
,
J. -Y.
,
Besnault
,
B.
, and
Lavaste
,
F.
, 1998, “
Development of a 3D Finite Element Model of the Human Body
,”
Proc. Stapp Car Crash Conf.
0585-086X,
42
, pp.
215
238
.
11.
Furusu
,
K.
,
Wantanbe
,
I.
,
Kato
,
C.
,
Miki
,
K.
, and
Hasegawa
,
J.
, 2001, “
Fundamental Study of Side Impact Analysis Using Finite Element Model of the Human Thorax
,”
JSAE Rev.
0389-4304,
22
, pp.
195
199
.
12.
Behr
,
M.
,
Arnoux
,
P. J.
,
Serre
,
T.
,
Bidal
,
S.
,
Kang
,
H. S.
,
Thollon
,
L.
,
Cavallero
,
C.
,
Kayvantash
,
K.
, and
Brunet
,
C.
, 2003, “
A Human Model for Road Safety: From Geometrical Acquisition to Model Validation With Radioss
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
(
4
), pp.
263
273
.
13.
Ruan
,
J.
,
El-Jawahri
,
R.
,
Chai
,
L.
,
Barbat
,
S.
, and
Prasad
,
P.
, 2003, “
Prediction and Analysis of Human Thoracic Impact Responses and Injuries in Cadaver Impacts Using a Full Human Body Finite Element Model
,”
Stapp Car Crash J.
,
47
, pp.
299
321
.
14.
Kimpara
,
H.
,
Iwamoto
,
M.
,
Watanabe
,
I.
,
Miki
,
K.
,
Lee
,
J. B.
,
Yang
,
K. H.
, and
King
,
A. I.
, 2006, “
Effect of Assumed Stiffness and Mass Density on the Impact Response of the Human Chest Using a Three-Dimensional FE Model of the Human Body
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
772
776
.
15.
Forman
,
J.
,
Lessley
,
D.
,
Kent
,
R.
,
Bostrom
,
O.
, and
Pipkorn
,
B.
, 2006, “
Whole-Body Kinematic and Dynamic Response of Restrained PMHS in Frontal Sled Tests
,”
Stapp Car Crash J.
,
50
, pp.
299
336
.
16.
Ali
,
T.
,
Kent
,
R. W.
,
Murakami
,
D.
, and
Kobayashi
,
S.
, 2005, “
Tracking Rib Deformation Under Anterior Loads Using Computed Tomography Imaging
,” Society of Automotive Engineers Paper No. 2005-01-0299.
17.
Shaw
,
G.
,
Lessley
,
D.
,
Evans
,
J.
,
Crandall
,
J.
,
Shin
,
J.
,
Portier
,
P.
, and
Paolini
,
G.
, 2007, “
Quasi-Static and Dynamic Thoracic Loading Tests: Cadaveric Torsos
,” International Research Council on the Biomechanics of Impact (IRCOBI), pp.
325
348
.
You do not currently have access to this content.