Shallow light penetration in tissue has been a technical barrier to the development of light-based methods for in vivo diagnosis and treatment of epithelial carcinomas. This problem can potentially be solved by utilizing minimally invasive probes to deliver light directly to target areas. To develop this solution, fiber optic microneedles capable of delivering light for either imaging or therapy were manufactured by tapering step-index silica-based optical fibers employing a melt-drawing process. Some of the microneedles were manufactured to have sharper tips by changing the heat source during the melt-drawing process. All of the microneedles were individually inserted into ex vivo pig skin samples to demonstrate the feasibility of their application in human tissues. The force on each microneedle was measured during insertion in order to determine the effects of sharper tips on the peak force and the steadiness of the increase in force. Skin penetration experiments showed that sharp fiber optic microneedles that are 3 mm long penetrate through 2 mm of ex vivo pig skin specimens. These sharp microneedles had a minimum average diameter of 73μm and a maximum tip diameter of 8μm. Flat microneedles, which had larger tip diameters, required a minimum average diameter of 125μm in order to penetrate through pig skin samples. Force versus displacement plots showed that a sharp tip on a fiber optic microneedle decreased the skin’s resistance during insertion. Also, the force acting on a sharp microneedle increased more steadily compared with a microneedle with a flat tip. However, many of the sharp microneedles sustained damage during skin penetration. Two designs that did not accrue damage were identified and will provide a basis of more robust microneedles. Developing resilient microneedles with smaller diameters will lead to transformative, novel modes of transdermal imaging and treatment that are less invasive and less painful for the patient.

1.
American Cancer Society
, 2009,
Cancer Facts and Figures 2009
,
American Cancer Society
,
Atlanta
.
2.
Marghoob
,
A. A.
,
Swindle
,
L. D.
,
Moricz
,
C. Z. M.
,
Negron
,
F. A. S.
,
Slue
,
B.
,
Halpern
,
A. C.
, and
Kopf
,
A. W.
, 2003, “
Instruments and New Technologies for the in Vivo Diagnosis of Melanoma
,”
J. Am. Acad. Dermatol.
0190-9622,
49
(
5
), pp.
777
797
.
3.
Marmur
,
E. S.
,
Schmults
,
C. D.
, and
Goldberg
,
D. J.
, 2004, “
A Review of Laser and Photodynamic Therapy for the Treatment of Nonmelanoma Skin Cancer
,”
Dermatol. Surg.
1076-0512,
30
(
s2
), pp.
264
271
.
4.
Robinson
,
D. S.
,
Parel
,
J. M.
,
Denham
,
D. B.
,
Gonzalez-Cirre
,
X.
,
Manns
,
F.
,
Milne
,
P. J.
,
Schachner
,
R. D.
,
Herron
,
A. J.
,
Comander
,
J.
, and
Hauptmann
,
G.
, 1998, “
Interstitial Laser Hyperthermia Model Development for Minimally Invasive Therapy of Breast Carcinoma
,”
J. Am. Coll. Surg.
1072-7515,
186
(
3
), pp.
284
292
.
5.
American Cancer Society
, 2009, “
What Are the Key Statistics in Bladder Cancer?
” http://www.cancer.org/docroot/cri/content/cri_2_4_1x_what_are_the_key_statistics_for_bladder_cancer_44.asp, accessed 3/30/2009.
6.
Muraro
,
G. B.
,
Grifoni
,
R.
, and
Spazzafumo
,
L.
, 2005, “
Endoscopic Therapy of Superficial Bladder Cancer in High-Risk Patients: Holmium Laser Versus Transurethral Resection. Surgical Technology International
,”
Surgical Technology International
,
14
, pp.
222
226
.
7.
Prudhomme
,
M.
,
Tang
,
J.
,
Rouy
,
S.
,
Delacretaz
,
G.
,
Salathe
,
R. P.
, and
Godlewski
,
G.
, 1996, “
Interstitial Diode Laser Hyperthermia in the Treatment of Subcutaneous Tumor
,”
Lasers Surg. Med.
0196-8092,
19
(
4
), pp.
445
450
.
8.
Li
,
X. D.
,
Chudoba
,
C.
,
Ko
,
T.
,
Pitris
,
C.
, and
Fujimoto
,
J. G.
, 2000, “
Imaging Needle for Optical Coherence Tomography
,”
Opt. Lett.
0146-9592,
25
(
20
), pp.
1520
1522
.
9.
Utzinger
,
U.
, and
Richards-Kortum
,
R. R.
, 2003, “
Fiber Optic Probes for Biomedical Optical Spectroscopy
,”
J. Biomed. Opt.
1083-3668,
8
(
1
), pp.
121
147
.
10.
Mumtaz
,
H.
,
Hallcraggs
,
M. A.
,
Wotherspoon
,
A.
,
Paley
,
M.
,
Buonaccorsi
,
G.
,
Amin
,
Z.
,
Wilkinson
,
I.
,
Kissin
,
M. W.
,
Davidson
,
I.
,
Taylor
,
I.
, and
Bown
,
S. G.
, 1996, “
Laser Therapy for Breast Cancer: MR Imaging and Histopathologic Correlation
,”
Radiology
0033-8419,
200
(
3
), pp.
651
658
.
11.
Milne
,
P. J.
,
Parel
,
J. M.
,
Manns
,
F.
,
Denham
,
D. B.
,
Gonzalez-Cirre
,
X.
, and
Robinson
,
D. S.
, 2000, “
Development of Stereotactically Guided Laser Interstitial Thermotherapy of Breast Cancer: In Situ Measurement and Analysis of the Temperature Field in Ex Vivo and In Vivo Adipose Tissue
,”
Lasers Surg. Med.
0196-8092,
26
(
1
), pp.
67
75
.
12.
Amin
,
Z.
,
Buonaccorsi
,
G.
,
Mills
,
T.
,
Harries
,
S.
,
Lees
,
W. R.
, and
Bown
,
S. G.
, 1993, “
Interstitial Laser Photocoagulation-Evaluation of a 1320 nm Nd-YAG and an 805 nm Diode-Laser—The Significance of Charring and the Value of Precharring the Fiber Tip
,”
Lasers Med. Sci.
0268-8921,
8
(
2
), pp.
113
120
.
13.
Kaushik
,
S.
,
Hord
,
A. H.
,
Denson
,
D. D.
,
Mcallister
,
D. V.
,
Smitra
,
S.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2001, “
Lack of Pain Associated With Microfabricated Microneedles
,”
Anesth. Analg.
0003-2999,
92
(
2
), pp.
502
504
.
14.
Gill
,
H. S.
,
Denson
,
D. D.
,
Burris
,
B. A.
, and
Prausnitz
,
M. R.
, 2008, “
Effect of Microneedle Design on Pain in Human Volunteers
,”
Clin. J. Pain
0749-8047,
24
(
7
), pp.
585
594
.
15.
Ramasubramanian
,
M. K.
,
Barham
,
O. M.
, and
Swaminathan
,
V.
, 2008, “
Mechanics of a Mosquito Bite With Applications to Microneedle Design
,”
Bioinspir. Biomim.
,
3
(
4
), p.
046001
.
16.
Davis
,
S. P.
,
Landis
,
B. J.
,
Adams
,
Z. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2004, “
Insertion of Microneedles Into Skin: Measurement and Prediction of Insertion Force and Needle Fracture Force
,”
J. Biomech.
0021-9290,
37
(
8
), pp.
1155
1163
.
17.
Roxhed
,
N.
,
Gasser
,
T. C.
,
Griss
,
P.
,
Holzapfel
,
G. A.
, and
Stemme
,
G.
, 2007, “
Penetration-Enhanced Ultrasharp Microneedles and Prediction on Skin Interaction for Efficient Transdermal Drug Delivery
,”
J. Microelectromech. Syst.
1057-7157,
16
(
6
), pp.
1429
1440
.
18.
Shergold
,
O. A.
, and
Fleck
,
N. A.
, 2005, “
Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
838
848
.
19.
Williamson
,
R. L.
, and
Miles
,
M. J.
, 1996, “
Melt-Drawn Scanning Near-Field Optical Microscopy Probe Profiles
,”
J. Appl. Phys.
0021-8979,
80
(
9
), pp.
4804
4812
.
20.
Tsuchiya
,
K.
,
Nakanishi
,
N.
,
Uetsuji
,
Y.
, and
Nakamachi
,
E.
, 2005, “
Development of Blood Extraction System for Health Monitoring System
,”
Biomed. Microdevices
1387-2176,
7
(
4
), pp.
347
353
.
21.
Park
,
J. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2006, “
Polymer Microneedles for Controlled-Release Drug Delivery
,”
Pharm. Res.
0724-8741,
23
(
5
), pp.
1008
1019
.
22.
Park
,
J. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2005, “
Biodegradable Polymer Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery
,”
J. Controlled Release
0168-3659,
104
(
1
), pp.
51
66
.
23.
Park
,
J. H.
,
Yoon
,
Y. K.
,
Choi
,
S. O.
,
Prausnitz
,
M. R.
, and
Allen
,
M. G.
, 2007, “
Tapered Conical Polymer Microneedles Fabricated Using an Integrated Lens Technique for Transdermal Drug Delivery
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
5
), pp.
903
913
.
24.
Chen
,
W. -F.
, and
Lui
,
E. M.
, 1987,
Structural Stability: Theory and Implementation
,
Elsevier
,
New York
.
You do not currently have access to this content.