The complex micro-/nanostructure of native cartilage-to-bone insertion exhibits gradations in extracellular matrix components, leading to variations in the viscoelastic and biomechanical properties along its thickness to allow for smooth transition of loads under physiological movements. Engineering a realistic tissue for osteochondral interface would, therefore, depend on the ability to develop scaffolds with properly graded physical and chemical properties to facilitate the mimicry of the complex elegance of native tissue. In this study, polycaprolactone nanofiber scaffolds with spatially controlled concentrations of β-tricalcium phosphate nanoparticles were fabricated using twin-screw extrusion-electrospinning process and seeded with MC3T3-E1 cells to form osteochondral tissue constructs. The objective of the study was to evaluate the linear viscoelastic and compressive properties of the native bovine osteochondral tissue and the tissue constructs formed in terms of their small-amplitude oscillatory shear, unconfined compression, and stress relaxation behavior. The native tissue, engineered tissue constructs, and unseeded scaffolds exhibited linear viscoelastic behavior for strain amplitudes less than 0.1%. Both native tissue and engineered tissue constructs demonstrated qualitatively similar gel-like behavior as determined using linear viscoelastic material functions. The normal stresses in compression determined at 10% strain for the unseeded scaffold, the tissue constructs cultured for four weeks, and the native tissue were 0.87±0.08kPa, 3.59±0.34kPa, and 210.80±8.93kPa, respectively. Viscoelastic and biomechanical properties of the engineered tissue constructs were observed to increase with culture time reflecting the development of a tissuelike structure. These experimental findings suggest that viscoelastic material functions of the tissue constructs can provide valuable inputs for the stages of in vitro tissue development.

1.
Mankin
,
H. J.
, 1982, “
The Response of Articular Cartilage to Mechanical Injury
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64
(
3
), pp.
460
466
.
2.
Berry
,
D. J.
,
Harmsen
,
W. S.
,
Ilstrup
,
D.
,
Lewallen
,
D. G.
, and
Cabanela
,
M. E.
, 1995, “
Survivorship of Uncemented Proximally Porous-Coated Femoral Components
,”
Clin. Orthop. Relat. Res.
0009-921X,
319
, pp.
168
177
.
3.
Jacobsson
,
S. A.
,
Djerf
,
K.
, and
Wahlstrom
,
O.
, 1996, “
20-Year Results of McKee-Farrar Versus Charnley Prosthesis
,”
Clin. Orthop. Relat. Res.
0009-921X,
329
, pp.
S60
S68
.
4.
Söderman
,
P.
,
Malchau
,
H.
,
Herberts
,
P.
,
Zugner
,
P.
,
Regner
,
H.
, and
Garellick
,
G.
, 2001, “
Outcome After Total Hip Arthroplasty—Part II. Disease-Specific Follow-Up and the Swedish National Total Hip Arthroplasty Register
,”
Acta Orthop. Scand.
0001-6470,
72
(
2
), pp.
113
119
.
5.
Kurtz
,
S.
,
Ong
,
K.
,
Lau
,
E.
,
Mowat
,
F.
, and
Halpern
,
M.
, 2007, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
89
(
4
), pp.
780
785
.
6.
Mckellop
,
H. A.
,
Campbell
,
P.
,
Park
,
S. H.
,
Schmalzried
,
T. P.
,
Grigoris
,
P.
,
Amstutz
,
H. C.
, and
Sarmiento
,
A.
, 1995, “
The Origin of Submicron Polyethylene Wear Debris in Total Hip-Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
311
, pp.
3
20
.
7.
Urban
,
R. M.
,
Tomlinson
,
M. J.
,
Hall
,
D. J.
, and
Jacobs
,
J. J.
, 2004, “
Accumulation in Liver and Spleen of Metal Particles Generated at Nonbearing Surfaces in Hip Arthroplasty
,”
J. Arthroplasty
0883-5403,
19
(
8
), pp.
94
101
.
8.
Jiranek
,
W. A.
,
Hanssen
,
A. D.
, and
Greenwald
,
A. S.
, 2006, “
Antibiotic-Loaded Bone Cement for Infection Prophylaxis in Total Joint Replacement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
88
(
11
), pp.
2487
2500
.
9.
Redman
,
S. N.
,
Oldfield
,
S. F.
, and
Archer
,
C. W.
, 2005, “
Current Strategies for Articular Cartilage Repair
,”
Eur. Cells Mater
1473-2262,
9
, pp.
23
32
.
10.
Kinner
,
B.
,
Capito
,
R. M.
, and
Spector
,
M.
, 2005, “
Regeneration of Articular Cartilage
,”
Regenerative Medicine II: Clinical and Preclinical Applications
,
I. V.
Yannas
, ed.,
Springer-Verlag
,
Berlin Heidelberg
, Vol.
94
, pp.
91
123
.
11.
Mikos
,
A. G.
,
Herring
,
S. W.
,
Ochareon
,
P.
,
Elisseeff
,
J.
,
Lu
,
H. H.
,
Kandel
,
R.
,
Schoen
,
F. J.
,
Toner
,
M.
,
Mooney
,
D.
,
Atala
,
A.
,
Dyke
,
M. E.
,
Kaplan
,
D.
, and
Vunjak-Novakovic
,
G.
, 2006, “
Engineering Complex Tissues
,”
Tissue Eng.
1076-3279,
12
(
12
), pp.
3307
3339
.
12.
Gomez
,
S.
,
Toffanin
,
R.
,
Bernstorff
,
S.
,
Romanello
,
M.
,
Amenitsch
,
H.
,
Rappolt
,
M.
,
Rizzo
,
R.
, and
Vittur
,
F.
, 2000, “
Collagen Fibrils Are Differently Organized in Weight-Bearing and Not-Weight-Bearing Regions of Pig Articular Cartilage
,”
J. Exp. Zool.
0022-104X,
287
(
5
), pp.
346
352
.
13.
An
,
Y. H.
, and
Martin
,
K. L.
, 2003,
Handbook of Histology Methods for Bone and Cartilage
,
Humana
,
Clifton, NJ
.
14.
Zizak
,
I.
,
Roschger
,
P.
,
Paris
,
O.
,
Misof
,
B. M.
,
Berzlanovich
,
A.
,
Bernstorff
,
S.
,
Amenitsch
,
H.
,
Klaushofer
,
K.
, and
Fratzl
,
P.
, 2003, “
Characteristics of Mineral Particles in the Human Bone/Cartilage Interface
,”
J. Struct. Biol.
1047-8477,
141
(
3
), pp.
208
217
.
15.
Bradley
,
D. A.
,
Muthuvelu
,
P.
,
Ellis
,
R. E.
,
Green
,
E. M.
,
Attenburrow
,
D.
,
Barrett
,
R.
,
Arkill
,
K.
,
Colridge
,
D. B.
, and
Winlove
,
C. P.
, 2007, “
Characterisation of Mineralisation of Bone and Cartilage: X-Ray Diffraction and Ca and SrK Alpha X-Ray Fluorescence Microscopy
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
263
(
1
), pp.
1
6
.
16.
Sharma
,
B.
, and
Elisseeff
,
J. H.
, 2004, “
Engineering Structurally Organized Cartilage and Bone Tissues
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
148
159
.
17.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
, 1984, “
Fluid Transport and Mechanical-Properties of Articular-Cartilage—A Review
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
377
394
.
18.
Boschetti
,
F.
,
Pennati
,
G.
,
Gervaso
,
F.
,
Peretti
,
G. M.
, and
Dubini
,
G.
, 2004, “
Biomechanical Properties of Human Articular Cartilage Under Compressive Loads
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
159
166
.
19.
Oloyede
,
A.
, and
Broom
,
N. D.
, 1991, “
Is Classical Consolidation Theory Applicable to Articular-Cartilage Deformation?
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
6
(
4
), pp.
206
212
.
20.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
, 1995, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1055
1066
.
21.
Verteramo
,
A.
, and
Seedhom
,
B. B.
, 2004, “
Zonal and Directional Variations in Tensile Properties of Bovine Articular Cartilage With Special Reference to Strain Rate Variation
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
203
213
.
22.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
, 2002, “
Direct Measurement of the Poisson's Ratio of Human Patella Cartilage in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
223
228
.
23.
Hayes
,
W. C.
, and
Mockros
,
L. F.
, 1971, “
Viscoelastic Properties of Human Articular Cartilage
,”
J. Appl. Physiol.
8750-7587,
31
(
4
), pp.
562
568
.
24.
Magnussen
,
R. A.
,
Guilak
,
F.
, and
Vail
,
T. P.
, 2005, “
Cartilage Degeneration in Post-Collapse Cases of Osteonecrosis of the Human Femoral Head: Altered Mechanical Properties in Tension, Compression, and Shear
,”
J. Orthop. Res.
0736-0266,
23
(
3
), pp.
576
583
.
25.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 1997, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
15
(
4
), pp.
499
506
.
26.
Klein
,
T. J.
,
Chaudhry
,
M.
,
Bae
,
W. C.
, and
Sah
,
R. L.
, 2007, “
Depth-Dependent Biomechanical and Biochemical Properties of Fetal, Newborn, and Tissue-Engineered Articular Cartilage
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
182
190
.
27.
Taylor
,
S. J. G.
,
Walker
,
P. S.
,
Perry
,
J. S.
,
Cannon
,
S. R.
, and
Woledge
,
R.
, 1998, “
The Forces in the Distal Femur and the Knee During Walking and Other Activities Measured by Telemetry
,”
J. Arthroplasty
0883-5403,
13
(
4
), pp.
428
437
.
28.
Parsons
,
J. R.
, and
Black
,
J.
, 1977, “
Viscoelastic Shear Behavior of Normal Rabbit Articular-Cartilage
,”
J. Biomech.
0021-9290,
10
(
1
), pp.
21
29
.
29.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
576
586
.
30.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
410
417
.
31.
Li
,
L. P.
, and
Herzog
,
W.
, 2004, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Theory and Numerical Formulation
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
181
194
.
32.
Hayes
,
W. C.
, and
Bodine
,
A. J.
, 1978, “
Flow-Independent Viscoelastic Properties of Articular-Cartilage Matrix
,”
J. Biomech.
0021-9290,
11
(
8–9
), pp.
407
419
.
33.
Spirt
,
A. A.
,
Mak
,
A. F.
, and
Wassell
,
R. P.
, 1989, “
Nonlinear Viscoelastic Properties of Articular-Cartilage in Shear
,”
J. Orthop. Res.
0736-0266,
7
(
1
), pp.
43
49
.
34.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
, 1993, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
0736-0266,
11
(
6
), pp.
771
781
.
35.
Schaefer
,
D.
,
Martin
,
I.
,
Shastri
,
P.
,
Padera
,
R. F.
,
Langer
,
R.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
, 2000, “
In Vitro Generation of Osteochondral Composites
,”
Biomaterials
0142-9612,
21
(
24
), pp.
2599
2606
.
36.
Gao
,
J.
,
Dennis
,
J. E.
,
Solchaga
,
L. A.
,
Awadallah
,
A. S.
,
Goldberg
,
V. M.
, and
Caplan
,
A. I.
, 2001, “
Tissue-Engineered Fabrication of an Osteochondral Composite Graft Using Rat Bone Marrow-Derived Mesenchymal Stem Cells
,”
Tissue Eng.
1076-3279,
7
(
4
), pp.
363
371
.
37.
Sherwood
,
J. K.
,
Riley
,
S. L.
,
Palazzolo
,
R.
,
Brown
,
S. C.
,
Monkhouse
,
D. C.
,
Coates
,
M.
,
Griffith
,
L. G.
,
Landeen
,
L. K.
, and
Ratcliffe
,
A.
, 2002, “
A Three-Dimensional Osteochondral Composite Scaffold for Articular Cartilage Repair
,”
Biomaterials
0142-9612,
23
(
24
), pp.
4739
4751
.
38.
Hung
,
C. T.
,
Lima
,
E. G.
,
Mauck
,
R. L.
,
Taki
,
E.
,
LeRoux
,
M. A.
,
Lu
,
H. H.
,
Stark
,
R. G.
,
Guo
,
X. E.
, and
Ateshian
,
G. A.
, 2003, “
Anatomically Shaped Osteochondral Constructs for Articular Cartilage Repair
,”
J. Biomech.
0021-9290,
36
(
12
), pp.
1853
1864
.
39.
Davisson
,
T.
,
Kunig
,
S.
,
Chen
,
A.
,
Sah
,
R.
, and
Ratcliffe
,
A.
, 2002, “
Static and Dynamic Compression Modulate Matrix Metabolism in Tissue Engineered Cartilage
,”
J. Orthop. Res.
0736-0266,
20
(
4
), pp.
842
848
.
40.
Angele
,
P.
,
Yoo
,
J. U.
,
Smith
,
C.
,
Mansour
,
J.
,
Jepsen
,
K. J.
,
Nerlich
,
M.
, and
Johnstone
,
B.
, 2003, “
Cyclic Hydrostatic Pressure Enhances the Chondrogenic Phenotype of Human Mesenchymal Progenitor Cells Differentiated In Vitro
,”
J. Orthop. Res.
0736-0266,
21
(
3
), pp.
451
457
.
41.
Erisken
,
C.
,
Kalyon
,
D. M.
, and
Wang
,
H.
, 2008, “
Functionally Graded Electrospun Polycaprolactone and Beta-Tricalcium Phosphate Nanocomposites for Tissue Engineering Applications
,”
Biomaterials
0142-9612,
29
(
30
), pp.
4065
4073
.
42.
Erisken
,
C.
,
Kalyon
,
D. M.
, and
Wang
,
H. J.
, 2008, “
A Hybrid Twin Screw Extrusion/Electrospinning Method to Process Nanoparticle-Incorporated Electrospun Nanofibres
,”
Nanotechnology
0957-4484,
19
(
16
),
165302
(8 pp).
43.
Armstrong
,
C. G.
,
Bahrani
,
A. S.
, and
Gardner
,
D. L.
, 1979, “
In Vitro Measurement of Articular Cartilage Deformations in the Intact Human Hip Joint Under Load
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
61
(
5
), pp.
744
755
.
44.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
, 1994, “
Cartilage Stresses in the Human Hip-Joint
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
10
18
.
45.
Eckstein
,
F.
,
Lemberger
,
B.
,
Stammberger
,
T.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
, 2000, “
Patellar Cartilage Deformation In Vivo After Static Versus Dynamic Loading
,”
J. Biomech.
0021-9290,
33
(
7
), pp.
819
825
.
46.
Kalyon
,
D. M.
,
Yaras
,
P.
,
Aral
,
B.
, and
Yilmazer
,
U.
, 1993, “
Rheological Behavior of a Concentrated Suspension—A Solid Rocket Fuel Simulant
,”
J. Rheol.
0148-6055,
37
(
1
), pp.
35
53
.
47.
Aral
,
B. K.
, and
Kalyon
,
D. M.
, 1994, “
Effects of Temperature and Surface-Roughness on Time-Dependent Development of Wall Slip in Steady Torsional Flow of Concentrated Suspensions
,”
J. Rheol.
0148-6055,
38
(
4
), pp.
957
972
.
48.
Jay
,
G. D.
,
Tantravahi
,
U.
,
Britt
,
D. E.
,
Barrach
,
H. J.
, and
Cha
,
C. J.
, 2001, “
Homology of Lubricin and Superficial Zone Protein (SZP): Products of Megakaryocyte Stimulating Factor (MSF) Gene Expression by Human Synovial Fibroblasts and Articular Chondrocytes Localized to Chromosome 1q25
,”
J. Orthop. Res.
0736-0266,
19
(
4
), pp.
677
687
.
49.
Kalyon
,
D. M.
, 2005, “
Apparent Slip and Viscoplasticity of Concentrated Suspensions
,”
J. Rheol.
0148-6055,
49
(
3
), pp.
621
640
.
50.
DiSilvestro
,
M. R.
,
Zhu
,
Q. L.
, and
Suh
,
J. K. F.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
198
200
.
51.
Barker
,
M. K.
, and
Seedhom
,
B. B.
, 2001, “
The Relationship of the Compressive Modulus of Articular Cartilage With Its Deformation Response to Cyclic Loading: Does Cartilage Optimize Its Modulus so as to Minimize the Strains Arising in it Due to the Prevalent Loading Regime?
,”
Rheumatology (Oxford)
,
40
(
3
), pp.
274
284
.
52.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids: Fluid Mechanics
,
2nd ed.
,
Wiley
,
New York
.
53.
Kalyon
,
D. M.
,
Yu
,
D.
, and
Yu
,
J.
, 1988, “
Melt Rheology of Two Engineering Plastics: Poly(Ether Imide) and Poly (2,6-Dimethyl-1,4 Phenylene Ether)
,”
J. Rheol.
0148-6055,
32
(
8
), pp.
789
811
.
54.
Chambon
,
F.
, and
Winter
,
H. H.
, 1987, “
Linear Viscoelasticity at the Gel Point of A Cross-Linking PDMS With Imbalanced Stoichiometry
,”
J. Rheol.
0148-6055,
31
(
8
), pp.
683
697
.
55.
De Rosa
,
M. E.
, and
Winter
,
H. H.
, 1994, “
The Effect of Entanglements on the Rheological Behavior of Polybutadiene Critical Gels
,”
Rheol. Acta
0035-4511,
33
(
3
), pp.
220
237
.
56.
Stading
,
M.
, and
Langer
,
R.
, 1999, “
Mechanical Shear Properties of Cell-Polymer Cartilage Constructs
,”
Tissue Eng.
1076-3279,
5
(
3
), pp.
241
250
.
57.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
, 1986, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
0736-0266,
4
(
4
), pp.
379
392
.
58.
Park
,
S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Mechanical Response of Bovine Articular Cartilage Under Dynamic Unconfined Compression Loading at Physiological Stress Levels
,”
Osteoarthritis Cartilage
1063-4584,
12
(
1
), pp.
65
73
.
59.
Garnero
,
P.
,
Borel
,
O.
,
Gineyts
,
E.
,
Duboeuf
,
F.
,
Solberg
,
H.
,
Bouxsein
,
M. L.
,
Christiansen
,
C.
, and
Delmas
,
P. D.
, 2006, “
Extracellular Post-Translational Modifications of Collagen Are Major Determinants of Biomechanical Properties of Fetal Bovine Cortical Bone
,”
Bone
,
38
(
3
), pp.
300
309
.
60.
Burr
,
D. B.
, 2002, “
The Contribution of the Organic Matrix to Bone’s Material Properties
,”
Bone
,
31
(
1
), pp.
8
11
.
You do not currently have access to this content.