In spinal vertebral burst fractures, the dynamic properties of the trabecular centrum, which is the central region of porous bone inside the vertebra, can play an important role in determining the failure mode. If the failure occurs in the posterior portion of the vertebral body, spinal canal occlusion can occur and ejected trabecular bone can impact the spinal cord resulting in serious injury. About 15% of all spinal cord injuries are caused by such burst fractures. Unfortunately, due to the uniqueness of burst fracture injuries, postinjury investigation cannot always accurately assess the degree of damage caused by these fractures. This research makes an effort to begin understanding the governing effects in this important bone fracture event. Measurements of the dynamic deformation response of bovine trabecular bone with the marrow intact and marrow removed using a modified split-Hopkinson pressure bar apparatus are reported and compared with quasistatic deformation response results. Because trabecular bone is more compliant and lower in strength than cortical bone, typical Hopkinson pressure bar experimental techniques used for high strain rate testing of harder materials cannot be applied. Instead, a quartz-crystal-embedded, split-Hopkinson pressure bar developed for testing compliant, low strength materials is used. Care is taken into account for the orthotropic properties in the bone by testing only along the principle material axes, determined through microcomputed tomography. In addition, shaping of the stress wave pulse is used to ensure a constant strain rate and homogeneous specimen deformation. Results indicate that the strength of trabecular bone increases by a factor of approximately 2–3 when the strain rate increases from 103s1 to 500s1 and that the bone fractures beyond a critical strain.

1.
Tran
,
N. T.
,
et al.
, 1995, “
Mechanism of the Burst Fracture in the Thoracolumbar Spine
,”
Spine
0362-2436,
20
, pp.
1984
1988
.
2.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg.
0021-9355,
7
, pp.
954
962
.
3.
Fyhrie
,
D. P.
, and
Schaffler
,
M. B.
, 1994, “
Failure Mechanisms in Human Vertebral Cancellous Bone
,”
Bone
,
15
, pp.
105
109
. 8756-3282
4.
Debnath
,
L.
, 1995,
Integral Transforms and Their Applications
,
CRC
,
New York
.
5.
Hayes
,
W. C.
, and
Carter
,
D. R.
, 1976, “
Postyield Behavior of Subchondral Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
10
, pp.
537
544
.
6.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
, 1998, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
0021-9290,
31
, pp.
601
608
.
7.
Lim
,
T.
, and
Hong
,
J.
, 2000, “
Poroelastic Properties of Bovine Vertebral Trabecular Bone
,”
J. Bone Jt. Surg.
0021-9355,
18
, pp.
671
677
.
8.
Ulrich
,
D.
,
et al.
, 1999, “
The Ability of Three-Dimensional Structural Indices to Reflect Mechanical Aspects of Trabecular Bone
,”
Bone
,
25
, pp.
55
60
. 8756-3282
9.
Kasra
,
M.
, and
Grynpas
,
M. D.
, 1998, “
Static and Dynamic Finite Element Analysis of an Idealized Structural Model of Vertebral Trabecular Bone
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
267
272
.
10.
Lim
,
T.
, and
Hong
,
J.
, 1998, “
Poroelastic Model of Trabecular Bone in Uniaxial Strain Conditions
,”
Journal of Musculoskeletal Research
,
2
, pp.
167
180
.
11.
Hong
,
J.
,
et al.
, 2001, “
Strain Rate Dependent Poroelastic Properties of Bovine Vertebral Trabecular Bone
,”
KSME Int. J.
1226-4865,
15
, pp.
1032
1040
.
12.
Baker
,
W. W.
, and
Yew
,
C. H.
, 1966, “
Strain Rate Effects in the Propagation of Torsional Plastic Waves
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
917
923
.
13.
Lewis
,
J. L.
, and
Campbell
,
J. D.
, 1972, “
The Development and Use of a Torsional Hopkinson Bar Apparatus
,”
Exp. Mech.
0014-4851,
12
, pp.
520
524
.
14.
Lindholm
,
U. S.
, 1964, “
Some Experiments With the Split-Hopkinson Pressure Bar
,”
J. Mech. Phys. Solids
0022-5096,
12
, pp.
317
335
.
15.
Lindholm
,
U. S.
, and
Yeakley
,
L. M.
, 1968, “
High Strain Rate Testing: Tension and Compression
,”
Exp. Mech.
0014-4851,
8
, pp.
1
9
.
16.
Lipkin
,
J.
,
et al.
, 1978, “
The Effects of Strain Rate Variations on the Flow Stress of OFHC Copper
,”
J. Mech. Phys. Solids
0022-5096,
26
, pp.
251
268
.
17.
Nicholas
,
T.
, 1971, “
Strain Rate and Strain Rate History Effects in Several Metals in Torsion
,”
Exp. Mech.
0014-4851,
11
, pp.
370
374
.
18.
Ramesh
,
K. T.
, and
Ravichandran
,
G.
, 1990, “
Dynamic Behavior of a Boron Carbide-Aluminum Cermet: Experiment and Observations
,”
Mech. Mater.
0167-6636,
10
, pp.
19
29
.
19.
Staab
,
G. H.
, and
Gilat
,
A.
, 1991, “
A Direct Tension Split-Hopkinson Bar for High Strain Rate Testing
,”
Exp. Mech.
0014-4851,
31
, pp.
232
235
.
20.
Kolsky
,
H.
, 1949, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. London
0370-1328,
62B
, pp.
676
700
.
21.
Chen
,
W.
,
Lu
,
F.
, and
Zhou
,
B.
, 2000, “
A Quartz-Crystal-Embedded Split-Hopkinson Pressure Bar for Soft Materials
,”
Exp. Mech.
0014-4851,
40
, pp.
1
6
.
22.
Wang
,
X. S.
,
Guyette
,
J.
,
Liu
,
X.
,
Roeder
,
R. K.
, and
Niebur
,
G. L.
, 2005, “
Axial-Shear Interaction Effects on Microdamage in Bovine Tibial Trabecular Bone
,”
Eur. J. Morphol.
0924-3860,
42
, pp.
61
70
.
23.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskies
,
R.
, and
Odgaard
,
A.
, 1995, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite Element Models
,”
J. Biomech.
0021-9290,
28
, pp.
69
81
.
24.
Pilcher
,
W. A.
, 2004, “
High Strain Rate Testing of Bovine Trabecular Bone
,” M.S. thesis, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN.
25.
Lakes
,
R. S.
, 2001, “
Viscoelastic Properties of Cortical Bone
,”
Bone Mechanics Handbook
,
S. C.
Cowin
, ed.,
CRC
,
New York
.
26.
Lakes
,
R. S.
,
Katz
,
J. L.
, and
Sternstein
,
S. S.
, 1979, “
Viscoelastic Properties of Wet Cortical Bone—I. Torsional and Biaxial Studies
,”
J. Biomech.
0021-9290,
12
, pp.
657
678
.
27.
Sasaki
,
N.
, and
Enyo
,
A.
, 1995, “
Viscoelastic Properties of Bone as a Function of Water Content
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
809
815
.
You do not currently have access to this content.