In this paper, we develop structured tree outflow boundary conditions for modeling the airflow in patient specific human lungs. The utilized structured tree is used to represent the nonimageable vessels beyond the 3D domain. The coupling of the two different scales (1D and 3D) employs a Dirichlet–Neumann approach. The simulations are performed under a variety of conditions such as light breathing and constant flow ventilation (which is characterized by very rapid acceleration and deceleration). All results show that the peripheral vessels significantly impact the pressure, however, the flow is relatively unaffected, reinforcing the fact that the majority of the lung impedance is due to the lower generations rather than the peripheral vessels. Furthermore, simulations of a hypothetical diseased lung (restricted flow in the superior left lobe) under mechanical ventilation show that the mean pressure at the outlets of the 3D domain is about 28% higher. This hypothetical model illustrates potential causes of volutrauma in the human lung and furthermore demonstrates how different clinical scenarios can be studied without the need to assume the unknown flow distribution into the downstream region.

1.
Rubenfeld
,
G. D.
,
Caldwell
,
E.
,
Peabody
,
E.
,
Weaver
,
J.
,
Martin
,
D. P.
,
Neff
,
M.
,
Stern
,
E. J.
, and
Hudson
,
L. D.
, 2005, “
Incidence and Outcomes of Acute Lung Injury
,”
N. Engl. J. Med.
0028-4793,
353
, pp.
1685
1693
.
2.
Ranieri
,
V. M.
,
Suter
,
P. M.
,
Tortorella
,
C.
,
Tullio
,
R. D.
,
Dayer
,
J. M.
,
Brienza
,
A.
,
Bruno
,
F.
, and
Slutsky
,
A. S.
, 1999, “
Effect of Mechanical Ventilation on Inflammatory Mediators in Patients With Acute Respiratory Distress Syndrome: A Randomized Controlled Trial
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
54
61
.
3.
Brower
,
R. G.
, and
Fessler
,
H. E.
, 2000, “
Mechanical Ventilation in Acute Lung Injury and Acute Respiratory Distress Syndrome
,”
Clin. Chest Med.
0272-5231,
21
(
3
), pp.
491
510
.
4.
Amato
,
M. B.
,
Barbas
,
C. S.
,
Medeiros
,
D. M.
,
Magaldi
,
R. B.
,
Schettino
,
G. P.
,
Lorenzi-Filho
,
G.
,
Kairalla
,
R. A.
,
Deheinzelin
,
D.
,
Munoz
,
C.
,
Oliveira
,
R.
,
Takagaki
,
T. Y.
, and
Carvalho
,
C. R.
, 1998, “
Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome
,”
N. Engl. J. Med.
0028-4793,
338
, pp.
347
354
.
5.
Hickling
,
K. G.
,
Henderson
,
S. J.
, and
Jackson
,
R.
, 1990, “
Low Mortality Associated With Volume Pressure Limited Ventilation With Permissive Hypercapnia in Severe Adult Respiratory Distress Syndrome
,”
Intensive Care Med.
0342-4642,
16
, pp.
372
377
.
6.
Brower
,
R. G.
,
Lanken
,
P. N.
,
MacIntyre
,
N.
,
Matthay
,
M. A.
,
Morris
,
A.
,
Ancukiewicz
,
M.
,
Schoenfeld
,
D.
, and
Thompson
,
B. T.
, 2004, “
Higher Versus Lower Positive End-Expiratory Pressures in Patients With the Acute Respiratory Distress Syndrome
,”
N. Engl. J. Med.
0028-4793,
351
(
4
), pp.
327
336
.
7.
Michaud
,
G.
, and
Cardinal
,
P.
, 2003, “
Mechanisms of Ventilator-Induced Lung Injury: The Clinician’s Perspective
,”
Crit. Care
1364-8535,
7
, pp.
209
210
.
8.
MacCallum
,
N.
, and
Evans
,
T.
, 2004, “
Acute Lung Injury
,”
Anaesth. Intensive Care
0310-057X,
5
(
11
), pp.
389
391
.
9.
Moloney
,
E. D.
, and
Griffiths
,
M. J. D.
, 2004, “
Protective Ventilation of Patients With Acute Respiratory Distress Syndrome
,”
Br. J. Anaesth.
0007-0912,
92
(
2
), pp.
261
270
.
10.
Vieira
,
S. R.
,
Puybasset
,
L.
,
Richecoeur
,
J.
,
Lu
,
Q.
,
Cluzel
,
P.
,
Gusman
,
P. B.
,
Coriat
,
P.
, and
Rouby
,
J.
, 1998, “
A Lung Computed Tomographic Assessment of Positive End-Expiratory Pressure-Induced Lung Overdistension
,”
Am. J. Respir. Crit. Care Med.
1073-449X,
158
, pp.
1571
1577
.
11.
Ware
,
L. B.
, and
Matthay
,
M. A.
, 2000, “
The Acute Respiratory Distress Syndrome
,”
N. Engl. J. Med.
0028-4793,
233
(
2
), pp.
309
319
.
12.
Green
,
A. S.
, 2004, “
Modelling of Peak-Flow Wall Shear Stress in Major Airways of the Lung
,”
J. Biomech.
0021-9290,
37
(
5
), pp.
661
667
.
13.
Liu
,
Y.
,
So
,
R. M. C.
, and
Zhang
,
C. H.
, 2002, “
Modeling the Bifurcating Flow in a Human Lung Airway
,”
J. Biomech.
0021-9290,
35
, pp.
465
473
.
14.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2004, “
Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model
,”
J. Comput. Phys.
0021-9991,
198
, pp.
178
210
.
15.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Springer
,
New York
.
16.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
, 1971, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
8750-7587,
31
, pp.
207
217
.
17.
Wall
,
W. A.
, and
Rabczuk
,
T.
, 2008, “
Fluid Structure Interaction in Lower Airways of CT-Based Lung Geometries
,”
Int. J. Numer. Methods Fluids
0271-2091,
57
, pp.
653
675
.
18.
Baoshun
,
M.
, and
Lutchen
,
K. R.
, 2006, “
An Anatomically Based Hybrid Computational Model of the Human Lung and Its Application to Low Frequency Oscillatory Mechanics
,”
Ann. Biomed. Eng.
0090-6964,
14
, pp.
1691
1704
.
19.
Lin
,
C. L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
, 2007, “
Characteristics of the Turbulent Laryngeal Jet and Its Effect on Airflow in the Human Intra-Thoracic Airways
,”
Respir. Physiol. Neurbiol.
1569-9048,
157
, pp.
295
309
.
20.
Kabilan
,
S.
,
Lin
,
C.
, and
Hoffman
,
E. A.
, 2006, “
Characteristics of Airflow in a CT-Based Ovine Lung: A Numerical Study
,”
J. Appl. Physiol.
8750-7587,
102
, pp.
1469
1482
.
21.
Küttler
,
U.
,
Gee
,
M.
,
Förster
,
C.
,
Comerford
,
A.
, and
Wall
,
W. A.
, 2010, “
Coupling Strategies for Biomedical Fluid-Structure Interaction Problems
,”
International Journal for Numerical Methods in Biomedical Engineering
,
26
, pp.
305
321
.
22.
Suki
,
B.
,
Habib
,
R. H.
, and
Jackson
,
A. C.
, 1993, “
Wave Propagation, Input Impedance, and Wall Mechanics of the Calf Trachea From 16 to 1,600 Hz
,”
Am. J. Physiol.
0002-9513,
75
, pp.
2755
2766
.
23.
Lutchen
,
K. R.
,
Hantos
,
Z.
,
Petak
,
F.
,
Adamicza
,
A.
, and
Suki
,
B.
, 1996, “
Airway Inhomogeneities Contribute to Apparent Lung Tissue Mechanics During Constriction
,”
Am. J. Physiol.
0002-9513,
80
, pp.
1841
1849
.
24.
Gillis
,
H. L.
, and
Lutchen
,
K. R.
, 1999, “
How Heterogeneous Bronchoconstriction Affects Ventilation Distribution in Human Lungs: A Morphometric Model
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
14
22
.
25.
Nucci
,
G.
,
Tessarin
,
S.
, and
Cobelli
,
C.
, 2002, “
A Morphometric Model of Lung Mechanics for Time-Domain Analysis of Alveolar Pressures During Mechanical Ventilation
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
537
545
.
26.
Olufsen
,
M. S.
, 1999, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol.
0002-9513,
45
, pp.
H257
H268
.
27.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
, 2000, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
1281
1299
.
28.
Steele
,
B. N.
,
Olufsen
,
M. S.
, and
Taylor
,
C. A.
, 2007, “
Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
10
, pp.
39
51
.
29.
Vignon-Clementel
,
I.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
30.
Tuminaro
,
M.
,
Heroux
,
S.
,
Hutchinson
,
S.
, and
Shadid
,
J. N.
, 1999, “
Aztec User Guide
,” Version 2.1.
31.
Zamir
,
M.
, 2000,
The Physics of Pulsatile Flow
,
Springer
,
New York
.
32.
Tawhai
,
M. H.
,
Hunter
,
P.
,
Tschirren
,
J.
,
Reinhardt
,
J.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
, 2004, “
CT-Based Geometry Analysis and Finite Element Models of the Human and Ovine Bronchial Tree
,”
J. Appl. Physiol.
8750-7587,
97
, pp.
2310
2321
.
33.
Kitaoka
,
H.
,
Takaki
,
R.
, and
Suki
,
B.
, 1999, “
A Three-Dimensional Model of the Human Airway Tree
,”
J. Appl. Physiol.
8750-7587,
87
, pp.
2207
2217
.
34.
Wall
,
W. A.
,
Wiechert
,
L.
,
Comerford
,
A.
, and
Rausch
,
S.
, 2010, “
Towards a Comprehensive Computational Model for the Respiratory System
,”
International Journal for Numerical Methods in Biomedical Engineering
, in press.
35.
Wiechert
,
L.
, and
Wall
,
W. A.
, 2010, “
A Nested Dynamic Multi-Scale Approach for 3D Problems Accounting for Micro-Scale Multi-Physics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
199
, pp.
1342
1351
.
36.
Pedley
,
T. J.
, 1977, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
229
274
.
37.
Tawhai
,
M. H.
,
Pullan
,
A. H.
, and
Hunter
,
P. J.
, 2000, “
Generation of an Anatomically Based Three-Dimensional Model of the Conducting Airways
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
793
802
.
38.
Shaw
,
R. J.
,
Djukanovic
,
R.
,
Tashkin
,
D. P.
,
Millar
,
A. B.
,
Du Bois
,
R. M.
, and
Corris
,
P. A.
, 2002, “
The Role of Small Airways in Lung Disease
,”
Respir. Med.
0954-6111,
96
, pp.
67
80
.
39.
Evans
,
D. J.
, and
Green
,
M.
, 1998, “
Small Airways: A Time To Revisit?
,”
Thorax
0040-6376,
53
, pp.
629
630
.
40.
Macklem
,
P.
, 1998, “
The Physiology of Small Airways
,”
Am. J. Respir. Crit. Care Med.
1073-449X,
157
, pp.
S181
S183
.
41.
Mols
,
G.
,
Priebe
,
H. J.
, and
Guttmann
,
J.
, 2006, “
Alveolar Recruitment in Acute Lung Injury
,”
Br. J. Anaesth.
0007-0912,
96
, pp.
156
166
.
42.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2009, “
An Adjustable Triple-Bifurcation Unit Model for Air-Particle Flow Simulations in Human Tracheobronchial Airways
,”
ASME J. Biomech. Eng.
0148-0731,
131
, pp.
021007
.
43.
Gemci
,
T.
,
Ponyavinc
,
V.
,
Chena
,
Y.
,
Chen
,
H.
, and
Collins
,
R.
, 2008, “
Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract
,”
J. Biomech.
0021-9290,
41
, pp.
2047
2054
.
44.
Wiechert
,
L.
,
Metzke
,
R.
, and
Wall
,
W. A.
, 2009, “
Modeling the Mechanical Behavior of Lung Tissue at the Micro-Level
,”
J. Eng. Mech.
0733-9399,
135
, pp.
434
438
.
You do not currently have access to this content.