The aim of skin-marker-based motion analysis is to reconstruct the motion of a kinematical model from noisy measured motion of skin markers. Existing kinematic models for reconstruction of chains of segments can be divided into two categories: analytical methods that do not take joint constraints into account and numerical global optimization methods that do take joint constraints into account but require numerical optimization of a large number of degrees of freedom, especially when the number of segments increases. In this study, a new and largely analytical method for a chain of rigid bodies is presented, interconnected in spherical joints (chain-method). In this method, the number of generalized coordinates to be determined through numerical optimization is three, irrespective of the number of segments. This new method is compared with the analytical method of Veldpaus et al. [1988, “A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates,” J. Biomech., 21, pp. 45–54] (Veldpaus-method, a method of the first category) and the numerical global optimization method of Lu and O’Connor [1999, “Bone Position Estimation From Skin-Marker Co-Ordinates Using Global Optimization With Joint Constraints,” J. Biomech., 32, pp. 129–134] (Lu-method, a method of the second category) regarding the effects of continuous noise simulating skin movement artifacts and regarding systematic errors in joint constraints. The study is based on simulated data to allow a comparison of the results of the different algorithms with true (noise- and error-free) marker locations. Results indicate a clear trend that accuracy for the chain-method is higher than the Veldpaus-method and similar to the Lu-method. Because large parts of the equations in the chain-method can be solved analytically, the speed of convergence in this method is substantially higher than in the Lu-method. With only three segments, the average number of required iterations with the chain-method is 3.0±0.2 times lower than with the Lu-method when skin movement artifacts are simulated by applying a continuous noise model. When simulating systematic errors in joint constraints, the number of iterations for the chain-method was almost a factor 5 lower than the number of iterations for the Lu-method. However, the Lu-method performs slightly better than the chain-method. The RMSD value between the reconstructed and actual marker positions is approximately 57% of the systematic error on the joint center positions for the Lu-method compared with 59% for the chain-method.

1.
Veldpaus
,
F. E.
,
Woltring
,
H. J.
, and
Dortmans
,
L. J. M. G.
, 1988, “
A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates
,”
J. Biomech.
0021-9290,
21
, pp.
45
54
.
2.
Lu
,
T. W.
, and
O’Connor
,
J. J.
, 1998, “
A Three-Dimensional Computer Graphics-Based Animated Model of the Human Locomotor System With Anatomical Joint Constraints
,”
Transaction of the 44th Annual Meeting of the Orthopaedic Research Society
, New Orleans, LA, p.
1109
.
3.
Lu
,
T. W.
, and
O’Connor
,
J. J.
, 1999, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimization With Joint Constraints
,”
J. Biomech.
0021-9290,
32
, pp.
129
134
.
4.
Bell
,
A. L.
,
Pedersen
,
D. R.
, and
Brand
,
R. A.
, 1990, “
A Comparison of the Accuracy of Several Hip Center Location Prediction Methods
,”
J. Biomech.
0021-9290,
23
, pp.
617
621
.
5.
Charlton
,
I. W.
,
Tate
,
P.
,
Smyth
,
P.
, and
Roren
,
L.
, 2004, “
Repeatability of an Optimized Lower Body Model
,”
Gait and Posture
0966-6362,
20
, pp.
213
221
.
6.
Begon
,
M.
,
Monnet
,
T.
, and
Lacouture
,
P.
, 2007, “
Effects of Movement for Estimating the Hip Joint Centre
,”
Gait and Posture
0966-6362,
25
, pp.
353
359
.
7.
Fletcher
,
R.
, and
Powell
,
M. J. D.
, 1963, “
A Rapidly Convergent Descent Method for Minimization
,”
Comput. J.
0010-4620,
6
, pp.
163
168
.
8.
Goldfarb
,
D. C.
, 1970, “
A Family of Variable Metric Updates Derived by Variational Means
,”
Math. Comput.
0025-5718,
24
, pp.
23
26
.
9.
Gill
,
P. E.
,
Murray
,
M.
, and
Wright
,
M. H.
, 1981,
Practical Optimization
,
Academic
,
London, UK
.
10.
Han
,
S. P.
, 1977, “
A Globally Convergent Method for Nonlinear Programming
,”
J. Optim. Theory Appl.
0022-3239,
22
, pp.
297
309
.
11.
Powell
,
M. J. D.
, 1978, “
A Fast Algorithm for Nonlinearly Constrained Optimization Calculations
,”
Numerical Analysis, Vol. 630, Lecture Notes in Mathematics
,
G. A.
Watson
, ed.,
Springer Verlag
,
Berlin, Germany
.
12.
Powell
,
M. J. D.
, 1978, “
The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations
,”
Nonlinear Programming 3
,
O. L.
Mangasarian
,
R. R.
Meyer
, and
S. M.
Robinson
, eds.,
Academic
,
New York, NY
.
13.
Leardini
,
A.
,
Chiari
,
L.
,
Della Croce
,
U.
, and
Cappozzo
,
A.
, 2005, “
Human Movement Analysis Using Stereophotogrammetry, Part 3: Soft Tissue Artifact Assessment and Compensation
,”
Gait and Posture
0966-6362,
21
, pp.
212
225
.
14.
Stagni
,
R.
,
Fantozzi
,
S.
,
Cappello
,
A.
, and
Leardini
,
A.
, 2005, “
Quantification of Soft Tissue Artifact in Motion Analysis by Combining 2D Fluoroscopy and Stereophotogrammetry: A Study on Two Subjects
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
20
, pp.
320
329
.
15.
Chèze
,
L.
,
Fregly
,
B. J.
, and
Dimnet
,
J.
, 1995, “
A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data
,”
J. Biomech.
0021-9290,
28
, pp.
879
884
.
16.
Cereatti
,
A.
,
Della Croce
,
U.
, and
Cappozzo
,
A.
, 2006, “
Reconstruction of Skeletal Movement Using Skin Markers: Comparative Assessment of Bone Pose Estimators
,”
Journal of NeuroEngineering and Rehabiliation
,
3
, pp.
1
12
.
17.
Camomilla
,
V.
,
Donati
,
M.
,
Stagni
,
R.
, and
Cappozzo
,
A.
, 2009, “
Non-Invasive Assessment of Superficial Soft Tissue Local Displacements During Movement: A Feasibility Study
,”
J. Biomech.
0021-9290,
42
, pp.
931
937
.
18.
Lucchetti
,
L.
,
Cappozzo
,
A.
,
Cappello
,
A.
, and
Della Croce
,
U.
, 1998, “
Skin Movement Artifact Assessment and Compensation in the Estimation of Knee-Joint Kinematics
,”
J. Biomech.
0021-9290,
31
, pp.
977
984
.
19.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
, 2005, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
0021-9290,
38
, pp.
621
626
.
20.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Dell Croce
,
U.
, 1996, “
Position and Orientation in Space of Bones During Movement: Experimental Artefacts
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
11
, pp.
90
100
.
21.
Leardini
,
A.
,
Cappozzo
,
A.
,
Catani
,
F.
,
Toksvig-Lasen
,
S.
,
Petitto
,
A.
,
Sforza
,
V.
,
Cassanelli
,
G.
, and
Giannini
,
S.
, 1999, “
Validation of a Functional Method for the Estimation of Hip Joint Centre Location
,”
J. Biomech.
0021-9290,
32
, pp.
99
103
.
22.
Kepple
,
T. M.
,
Arnold
,
A. S.
,
Stanhope
,
S. J.
, and
Siegel
,
K. L.
, 1994, “
Assessment of a Method to Estimate Muscle Attachments From Surface Landmarks: A 3D Computer Graphics Approach
,”
J. Biomech.
0021-9290,
27
, pp.
365
371
.
23.
Halvorsen
,
K.
,
Lesser
,
M.
, and
Lundberg
,
A.
, 1999, “
A New Method for Estimating the Axis of Rotation and the Center of Rotation
,”
J. Biomech.
0021-9290,
32
, pp.
1221
1227
.
24.
Gamage
,
S. S. H. U.
, and
Lasenby
,
J.
, 2002, “
New Least Squares Solutions for Estimation the Average Center of Rotation and the Axis of Rotation
,”
J. Biomech.
0021-9290,
35
, pp.
87
93
.
25.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
, 2006, “
A Survey of Formal Methods for Determining the Center of Rotation of Ball Joints
,”
J. Biomech.
0021-9290,
39
, pp.
2798
2809
.
26.
Chang
,
L. Y.
, and
Pollard
,
N. S.
, 2007, “
Robust Estimation of Dominant Axis of Rotation
,”
J. Biomech.
0021-9290,
40
, pp.
2707
2715
.
27.
Monnet
,
T.
,
Desailly
,
E.
,
Begon
,
M.
,
Vallée
,
C.
, and
Lacouture
,
P.
, 2007, “
Comparison of the SCoRE and HA Methods for Locating In Vivo the Glenohumeral Joint Center
,”
J. Biomech.
0021-9290,
40
, pp.
3487
3492
.
28.
Piazza
,
S. J.
,
Erdemir
,
A.
,
Okita
,
N.
, and
Cavanagh
,
P. R.
, 2004, “
Assessment of the Functional Method of Hip Joint Center Location Subject to Reduced Range of Hip Motion
,”
J. Biomech.
0021-9290,
37
, pp.
349
356
.
29.
Camomilla
,
V.
,
Cereatti
,
A.
,
Vannozzi
,
G.
, and
Cappozzo
,
A.
, 2006, “
An Optimized Protocol for Hip Joint Centre Determination Using the Functional Method
,”
J. Biomech.
0021-9290,
39
, pp.
1096
1106
.
30.
Sommer
,
H. J.
, III
, and
Miller
,
N. R.
, 1980, “
A Technique for Kinematic Modeling of Anatomical Joints
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
311
317
.
31.
Van den Bogert
,
J.
, and
Su
,
A.
, 2007, “
A Weighted Least Squares Method for Inverse Dynamic Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
11
, pp.
3
9
.
32.
Kirkwood
,
R. N.
,
Culham
,
E. G.
, and
Costigan
,
P.
, 1999, “
Radiograpahic and Non-Invasive Determination of the Hip Joint Center Location: Effect on Hip Joint Moments
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
, pp.
227
235
.
33.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
, 2007, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
, pp.
782
793
.
34.
Reinschmidt
,
C.
,
Van den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
, 1997, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
0021-9290,
30
, pp.
729
732
.
35.
Stagni
,
R.
,
Leardini
,
A.
,
Cappozzo
,
A.
,
Benedetti
,
M. G.
, and
Cappello
,
A.
, 2000, “
Effects of Hip Joint Centre Mislocation on Gait Analysis Results
,”
J. Biomech.
0021-9290,
33
, pp.
1479
1487
.
36.
Holden
,
J. P.
, and
Stanhope
,
S. J.
, 1998, “
The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments
,”
Gait and Posture
0966-6362,
7
, pp.
1
6
.
37.
van den Bogert
,
A. J.
,
Smith
,
G. D.
, and
Nigg
,
B. M.
, 1994, “
In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach
,”
J. Biomech.
0021-9290,
27
, pp.
1477
1488
.
You do not currently have access to this content.