Inflammation plays a key role in the development and stability of coronary plaques. Endothelial cells alter their expression in response to wall shear stress (WSS). Straight/tubular and asymmetric stenosis models were designed to study the localized expression of atheroprone molecules and inflammatory markers due to the presence of the spatial wall shear stress gradients created by an eccentric plaque. The effects of steady wall shear stress duration (0–24 h) and magnitude (4.518dynes/cm2) were analyzed in human abdominal aortic endothelial cells through quantitative real-time polymerase chain reaction (PCR) and immunofluorescence analysis in straight/tubular models. Regional expression was assessed by immunofluorescence and confocal microscopy in stenosis models. Under steady fully developed flow, endothelial cells exhibited a sustained increase in levels of atheroprotective genes with WSS duration and magnitude. The local response in the stenosis model showed that expression of endothelial nitric oxide synthase and Kruppel-like factor 2 is magnitude rather than gradient dependent. A WSS magnitude dependent transient increase in translocation of transcription factor nuclear factor κB was observed. Intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin exhibited a sustained increase in protein expression with time. The mRNA levels of these molecules were transiently upregulated and this was followed by a decrease in expression to levels lower than static controls. Regionally, increased inflammatory marker expression was observed in regions of WSS gradients both proximal and distal to the stenosis when compared with the uniform flow regions, whereas the atheroprotective markers were expressed to a greater extent in regions of elevated WSS magnitudes. The results from the straight/tubular model cannot explain the regional variation seen in the stenosis models. This may help explain the localization of inflammatory cells at the shoulders of plaques in vivo.

1.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
0009-7330,
66
(
4
), pp.
1045
1066
.
2.
Davies
,
P. F.
, 1991, “
Mechanical Sensing Mechanisms: Shear Stress and Endothelial Cells
,”
J. Vasc. Surg.
0741-5214,
13
(
5
), pp.
729
731
.
3.
Debakey
,
M. E.
,
Lawrie
,
G. M.
, and
Glaeser
,
D. H.
, 1985, “
Patterns of Atherosclerosis and Their Surgical Significance
,”
Ann. Surg.
0003-4932,
201
(
2
), pp.
115
131
.
4.
Frangos
,
S. G.
,
Gahtan
,
V.
, and
Sumpio
,
B.
, 1999, “
Localization of Atherosclerosis: Role of Hemodynamics
,”
Arch. Surg. (Chicago)
0004-0010,
134
(
10
), pp.
1142
1149
.
5.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 2006, “
Response of Arteries to Near Wall Fluid Dynamic Behavior
,”
Appl. Mech. Rev.
0003-6900,
43
(
2
), pp.
S98
S102
.
6.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Arherosclerosis in Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
, pp.
293
302
.
7.
Nerem
,
R. M.
, 1992, “
Vascular Fluid Mechanics, the Arterial Wall and Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
274
282
.
8.
Pedersen
,
E. M.
,
Agerbaek
,
M.
,
Kristensen
,
I. B.
, and
Yoganathan
,
A. P.
, 1997, “
Wall Shear Stress and Early Atherosclerotic Lesions in the Abdominal Aorta in Young Adults
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
13
, pp.
443
451
.
9.
Sabbah
,
H. N.
,
Khaja
,
F.
,
Brymer
,
J. F.
,
Hawkins
,
E. T.
, and
Stein
,
P. D.
, 1984, “
Blood Velocity in the Right Coronary Artery: Relation to the Distribution of Atherosclerotic Lesions
,”
Am. J. Cardiol.
0002-9149,
53
, pp.
1008
1012
.
10.
Shaaban
,
A. M.
, and
Duerinckx
,
A. J.
, 2000, “
Wall Shear Stress and Early Atherosclerosis: A Review
,”
AJR, Am. J. Roentgenol.
0361-803X,
174
(
6
), pp.
1657
1665
.
11.
Wood
,
K. M.
,
Cadogan
,
M. D.
,
Ramshaw
,
A. L.
, and
Parums
,
D. V.
, 1993, “
The Distribution of Adhesion Molecules in Human Atherosclerosis
,”
Histopathology
0309-0167,
22
(
5
), pp.
437
444
.
12.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
, 1983, “
Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
0009-7330,
53
, pp.
502
514
.
13.
Young
,
D. F.
, and
Tsai
,
F. Y.
, 1973, “
Flow Characteristics in Models of Arterial Stenoses. I. Steady Flow
,”
J. Biomech.
0021-9290,
6
, pp.
395
410
.
14.
Zhang
,
J. N.
,
Bergeron
,
A. L.
,
Yu
,
Q.
,
Sun
,
C.
,
McIntire
,
L. V.
,
Lopez
,
J. A.
, and
Dong
,
J. F.
, 2002, “
Platelet Aggregation and Activation Under Complex Patterns of Shear Stress
,”
Thromb. Haemostasis
0340-6245,
88
(
5
), pp.
817
821
.
15.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
(
1
), pp.
399
434
.
16.
Tarbell
,
J. M.
, 2003, “
Mass Transport in Arteries and the Localization of Atherosclerosis
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
79
118
.
17.
Bao
,
X.
,
Lu
,
C.
, and
Frangos
,
J. A.
, 1999, “
Temporal Gradients in Shear but not Steady Shear Stress Induces PDGF-A and MCP-1 Expression in Endothelial Cells; Role of NO, NF-κB, and Erg-1
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
19
, pp.
996
1003
.
18.
Burns
,
M. P.
, and
DePaola
,
N.
, 2005, “
Flow-Conditioned HUVECs Support Clustered Leukocyte Adhesion by Coexpressing ICAM-1 and E-Selectin
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
57
(
1
), pp.
H194
H204
.
19.
Cicha
,
I.
,
Beronov
,
K.
,
Ramirez
,
E. L.
,
Osterode
,
K.
,
Goppelt-Struebe
,
M.
,
Raaz
,
D.
,
Yilmaz
,
A.
,
Daniel
,
W. G.
, and
Garlichs
,
C. D.
, 2009, “
Shear Stress Preconditioning Modulates Endothelial Susceptibility to Circulating TNF-α and Monocytic Cell Recruitment in a Simplified Model of Arterial Bifurcations
,”
Atherosclerosis
0021-9150,
207
(
1
), pp.
93
102
.
20.
Cicha
,
I.
,
Goppelt-Struebe
,
M.
,
Yilmaz
,
A.
,
Daniel
,
W. G.
, and
Garlichs
,
C. D.
, 2008, “
Endothelial Dysfunction and Monocyte Recruitment in Cells Exposed to Non-Uniform Shear Stress
,”
Clin. Hemorheol Microcirc
1386-0291,
39
(
1–4
), pp.
113
119
.
21.
Dancu
,
M. B.
,
Berardi
,
D. E.
,
Vanden Heuvel
,
J. P.
, and
Tarbell
,
J. M.
, 2004, “
Asynchronous Shear Stress and Circumferential Strain Reduces Endothelial NO Synthase and Cyclooxygenase-2 but Induces Endothelin-1 Gene Expression in Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
24
(
11
), pp.
2088
2094
.
22.
Depaola
,
N.
,
Gimbrone
,
M. A.
, Jr.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
, Jr.
, 1992, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
1049-8834,
12
(
11
), pp.
1254
1257
.
23.
Haidekker
,
M. A.
,
White
,
C. R.
, and
Frangos
,
J. A.
, 2001, “
Analysis of Temporal Shear Stress Gradients During the Onset Phase of Flow Over a Backward-Facing Step
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
455
463
.
24.
LaMack
,
J. A.
, and
Friedman
,
M. H.
, 2007, “
Individual and Combined Effects of Shear Stress Magnitude and Spatial Gradient on Endothelial Cell Gene Expression
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
5
), pp.
H2853
H2859
.
25.
Nagel
,
T.
,
Resnick
,
N.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1999, “
Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
19
(
8
), pp.
1825
1834
.
26.
Peng
,
X.
,
Recchia
,
F. A.
,
Byrne
,
B. J.
,
Wittstein
,
I. S.
,
Ziegelstein
,
R. C.
, and
Kass
,
D. A.
, 2000, “
In Vitro System to Study Realistic Pulsatile Flow and Stretch Signaling in Cultured Vascular Cells
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
279
(
3
), pp.
C797
C805
.
27.
Qiu
,
Y.
, and
Tarbell
,
J. M.
, 2000, “
Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production
,”
J. Vasc. Res.
1018-1172,
37
(
3
), pp.
147
157
.
28.
White
,
C. R.
,
Haidekker
,
M.
,
Bao
,
X.
, and
Frangos
,
J. A.
, 2001, “
Temporal Gradients in Shear, but Not Spatial Gradients, Stimulate Endothelial Cell Proliferation
,”
Circulation
0009-7322,
103
, pp.
2508
2513
.
29.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
, 1998, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
(
5
), pp.
686
692
.
30.
Truskey
,
G. A.
,
Barber
,
K. M.
,
Robey
,
T. C.
,
Olivier
,
L. A.
, and
Combs
,
M. P.
, 1995, “
Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation
,”
ASME Biomech. Eng.
,
117
(
2
), pp.
203
210
.
31.
Croce
,
K.
, and
Libby
,
P.
, 2007, “
Intertwining of Thrombosis and Inflammation in Atherosclerosis
,”
Curr. Opin. Hematol.
1065-6251,
14
(
1
), pp.
55
61
.
32.
Libby
,
P.
, and
Theroux
,
P.
, 2005, “
Pathophysiology of Coronary Artery Disease
,”
Circulation
0009-7322,
111
(
25
), pp.
3481
3488
.
33.
Kovanen
,
P. T.
, 2007, “
Mast Cells and Degradation of Pericellular and Extracellular Matrices: Potential Contributions to Erosion, Rupture and Intraplaque Haemorrhage of Atherosclerotic Plaques
,”
Biochem. Soc. Trans.
0300-5127,
35
(
5
), pp.
857
861
.
34.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V. R.
, 1989, “
Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques
,”
Lancet
0140-6736,
334
(
8669
), pp.
941
944
.
35.
Iiyama
,
K.
,
Hajra
,
L.
,
Iiyama
,
M.
,
Li
,
H.
,
DiChiara
,
M.
,
Medoff
,
B. D.
, and
Cybulsky
,
M. I.
, 1999, “
Patterns of Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 Expression in Rabbit and Mouse Atherosclerotic Lesions and at Sites Predisposed to Lesion Formation
,”
Circ. Res.
0009-7330,
85
(
2
), pp.
199
207
.
36.
Cybulsky
,
M. I.
, and
Gimbrone
,
M. A.
, Jr.
, 1991, “
Endothelial Expression of a Mononuclear Leukocyte Adhesion Molecule During Atherogenesis
,”
Science
0036-8075,
251
(
4995
), pp.
788
791
.
37.
Li
,
H.
,
Cybulsky
,
M. I.
,
Gimbrone
,
M. A.
, Jr.
, and
Libby
,
P.
, 1993, “
An Atherogenic Diet Rapidly Induces VCAM-1, a Cytokine-Regulatable Mononuclear Leukocyte Adhesion Molecule, in Rabbit Aortic Endothelium
,”
Arterioscler. Thromb.
1049-8834,
13
(
2
), pp.
197
204
.
38.
O’Brien
,
K. D.
,
Allen
,
M. D.
,
McDonald
,
T. O.
,
Chait
,
A.
,
Harlan
,
J. M.
,
Fishbein
,
D.
,
McCarty
,
J.
,
Ferguson
,
M.
,
Hudkins
,
K.
, and
Benjamin
,
C. D.
, 1993, “
Vascular Cell Adhesion Molecule-1 is Expressed in Human Coronary Atherosclerotic Plaques. Implications for the Mode of Progression of Advanced Coronary Atherosclerosis
,”
J. Clin. Invest.
0021-9738,
92
(
2
), pp.
945
951
.
39.
Collins
,
T.
,
Read
,
M. A.
,
Neish
,
A. S.
,
Whitley
,
M. Z.
,
Thanos
,
D.
, and
Maniatis
,
T.
, 1995, “
Transcriptional Regulation of Endothelial Cell Adhesion Molecules: NF-κB and Cytokine-Inducible Enhancers
,”
FASEB J.
0892-6638,
9
(
10
), pp.
899
909
.
40.
Collins
,
T.
, and
Cybulsky
,
M. I.
, 2001, “
NF-κB: Pivotal Mediator or Innocent Bystander in Atherogenesis?
,”
J. Clin. Invest.
0021-9738,
107
(
3
), pp.
255
264
.
41.
Hajra
,
L.
,
Evans
,
A. I.
,
Chen
,
M.
,
Hyduk
,
S. J.
,
Collins
,
T.
, and
Cybulsky
,
M. I.
, 2000, “
The NF-κB Signal Transduction Pathway in Aortic Endothelial Cells Is Primed for Activation in Regions Predisposed to Atherosclerotic Lesion Formation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
(
16
), pp.
9052
9057
.
42.
Brunette
,
J.
,
Mongrain
,
R.
,
Cloutier
,
G.
,
Bertrand
,
M.
,
Bertrand
,
O. F.
, and
Tardif
,
J. C.
, 2001, “
A Novel Realistic Three-Layer Phantom for Intravascular Ultrasound Imaging
,”
Int. J. Cardiovasc. Imaging
,
17
(
5
), pp.
371
381
.
43.
Brunette
,
J.
,
Mongrain
,
R.
,
Laurier
,
J.
,
Galaz
,
R.
, and
Tardif
,
J. C.
, 2008, “
3D Flow Study in a Mildly Stenotic Coronary Artery Phantom Using a Whole Volume PIV Method
,”
Med. Eng. Phys.
1350-4533,
30
(
9
), pp.
1193
1200
.
44.
Couch
,
G. G.
,
Johnston
,
K. W.
, and
Ojha
,
M.
, 1996, “
Full-Field Flow Visualization and Velocity Measurement With a Photochromic Grid Method
,”
Meas. Sci. Technol.
0957-0233,
7
, pp.
1238
1246
.
45.
Leask
,
R. L.
,
Wayne
,
J. K.
, and
Ojha
,
M.
, 2004, “
Hemodynamic Effects of Clot Entrapment in the TrapEase Inferior Vena Cava Filter
,”
J. Vasc. Interv. Radiol.
1051-0443,
15
(
5
), pp.
485
490
.
46.
Ojha
,
M.
, 1994, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
0009-7330,
74
(
6
), pp.
1227
1231
.
47.
Ojha
,
M.
,
Hummel
,
R. L.
,
Cobbold
,
R. S.
, and
Johnston
,
K. W.
, 1988, “
Development and Evaluation of a High Resolution Photochromic Dye Method for Pulsatile Flow Studies
,”
J. Phys. E
0022-3735,
21
, pp.
998
1004
.
48.
Ojha
,
M.
,
Cobbold
,
R. S. C.
,
Johnston
,
K. W.
, and
Hummel
,
R. L.
, 1989, “
Pulsatile Flow Through Constricted Tubes: An Experimental Investigation Using Photochromic Tracer Methods
,”
J. Fluid Mech.
0022-1120,
203
(
1
), pp.
173
197
.
49.
Farcas
,
M.
,
Rouleau
,
L.
,
Fraser
,
R.
, and
Leask
,
R.
, 2009, “
The Development of 3-D, In Vitro, Endothelial Culture Models for the Study of Coronary Artery Disease
,”
Biomed. Eng. Online
1475-925X,
8
(
30
).
50.
Rouleau
,
L.
,
Farcas
,
M.
,
Copland
,
I.
,
Tardif
,
J. C.
,
Mongrain
,
R.
, and
Leask
,
R. L.
, 2009, “
Morphological and Functional Flow-Induced Response of Endothelial Cells and Adhesive Properties of Leukocytes in 3D Stenotic Models
,”
IFMBE Proc.
,
22
(
15
), pp.
2015
2018
.
51.
Rouleau
,
L.
,
Farcas
,
M.
,
Tardif
,
J. C.
,
Thorin
,
E.
,
Mongrain
,
R.
, and
Leask
,
R. L.
, 2006, “
Endothelial Cell Morphology and Response to Shear Stress in an Asymmetric Stenosis Model
,”
J. Biomech.
0021-9290,
39
, p.
S312
.
52.
Rouleau
,
L.
,
Rossi
,
J.
, and
Leask
,
R. L.
, 2009, “
Concentration and Time Effects of Dextran Exposure on Endothelial Cell Viability, Attachment and Inflammatory Marker Expression in Vitro
,”
Ann. Biomed. Eng.
0090-6964, in press.
53.
Huddleson
,
J. P.
,
Ahmad
,
N.
,
Srinivasan
,
S.
, and
Lingrel
,
J. B.
, 2005, “
Induction of KLF2 by Fluid Shear Stress Requires a Novel Promoter Element Activated by a Phosphatidylinositol 3-Kinase-Dependent Chromatin-Remodeling Pathway
,”
J. Biol. Chem.
0021-9258,
280
(
24
), pp.
23371
23379
.
54.
Lin
,
Z.
,
Kumar
,
A.
,
SenBanerjee
,
S.
,
Staniszewski
,
K.
,
Parmar
,
K.
,
Vaughan
,
D. E.
,
Gimbrone
,
M. A.
, Jr.
,
Balasubramanian
,
V.
,
Garcia-Cardena
,
G.
, and
Jain
,
M. K.
, 2005, “
Kruppel-Like Factor 2 (KLF2) Regulates Endothelial Thrombotic Function
,”
Circ. Res.
0009-7330,
96
(
5
), pp.
e48
e57
.
55.
SenBanerjee
,
S.
,
Lin
,
Z.
,
Atkins
,
G. B.
,
Greif
,
D. M.
,
Rao
,
R. M.
,
Kumar
,
A.
,
Feinberg
,
M. W.
,
Chen
,
Z.
,
Simon
,
D. I.
,
Luscinskas
,
F. W.
,
Michel
,
T. M.
,
Gimbrone
,
M. A.
, Jr.
,
Garcia-Cardena
,
G.
, and
Jain
,
M. K.
, 2004, “
KLF2 Is a Novel Transcriptional Regulator of Endothelial Proinflammatory Activation
,”
J. Exp. Med.
0022-1007,
199
(
10
), pp.
1305
1315
.
56.
Kuchan
,
M. J.
, and
Frangos
,
J. A.
, 1994, “
Role of Calcium and Calmodulin in Flow-Induced Nitric Oxide Production in Endothelial Cells
,”
Am. J. Physiol.
0002-9513,
266
(
3
), pp.
C628
C636
.
57.
Matsubara
,
M.
,
Hayashi
,
N.
,
Jing
,
T.
, and
Titani
,
K.
, 2003, “
Regulation of Endothelial Nitric Oxide Synthase by Protein Kinase C
,”
J. Biochem.
,
133
(
6
), pp.
773
781
.
58.
Schmidt
,
H. H. H. W.
,
Pollock
,
J. S.
,
Nakane
,
M.
,
Forstermann
,
U.
, and
Murad
,
F.
, 1992, “
Ca2+/Calmodulin-Regulated Nitric Oxide Synthases
,”
Cell Calcium
0143-4160,
13
(
6–7
), pp.
427
434
.
59.
Schneider
,
J. C.
,
El Kebir
,
D.
,
Chereau
,
C.
,
Lanone
,
S.
,
Huang
,
X. L.
,
De Buys Roessingh
,
A. S.
,
Mercier
,
J. C.
,
l'Ava-Santucci
,
J.
, and
Dinh-Xuan
,
A. T.
, 2003, “
Involvement of Ca2+/Calmodulin-Dependent Protein Kinase II in Endothelial NO Production and Endothelium-Dependent Relaxation
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
284
(
6
), pp.
H2311
H2319
.
60.
Traub
,
O.
, and
Berk
,
B. C.
, 1998, “
Laminar Shear Stress: Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
(
5
), pp.
677
685
.
61.
Malek
,
A. M.
,
Izumo
,
S.
, and
Alper
,
S. L.
, 1999, “
Modulation by Pathophysiological Stimuli of the Shear Stress-Induced Up-Regulation of Endothelial Nitric Oxide Synthase Expression in Endothelial Cells
,”
Neurosurgery
0148-396X,
45
(
2
), pp.
334
344
.
62.
Ranjan
,
V.
,
Xiao
,
Z.
, and
Diamond
,
S. L.
, 1995, “
Constitutive NOS Expression in Cultured Endothelial Cells Is Elevated by Fluid Shear Stress
,”
Am. J. Physiol.
0002-9513,
269
(
2
), pp.
H550
H555
.
63.
Uematsu
,
M.
,
Ohara
,
Y.
,
Navas
,
J. P.
,
Nishida
,
K.
,
Murphy
,
T. J.
,
Alexander
,
R. W.
,
Nerem
,
R. M.
, and
Harrison
,
D. G.
, 1995, “
Regulation of Endothelial Cell Nitric Oxide Synthase mRNA Expression by Shear Stress
,”
Am. J. Physiol.
0002-9513,
269
(
6
), pp.
C1371
C1378
.
64.
Dekker
,
R. J.
,
van Soest
,
S.
,
Fontijn
,
R. D.
,
Salamanca
,
S.
,
de Groot
,
P. G.
,
VanBavel
,
E.
,
Pannekoek
,
H.
, and
Horrevoets
,
A. J. G.
, 2002, “
Prolonged Fluid Shear Stress Induces a Distinct Set of Endothelial Cell Genes, Most Specifically Lung Kruppel-Like Factor (KLF2)
,”
Blood
0006-4971,
100
(
5
), pp.
1689
1698
.
65.
Dekker
,
R. J.
,
van Thienen
,
J. V.
,
Rohlena
,
J.
,
de Jager
,
S. C.
,
Elderkamp
,
Y. W.
,
Seppen
,
J.
,
de Vries
,
C. J. M.
,
Biessen
,
E. A. L.
,
van Berkel
,
T. J. C.
,
Pannekoek
,
H.
, and
Horrevoets
,
A. J. G.
, 2005, “
Endothelial KLF2 Links Local Arterial Shear Stress Levels to the Expression of Vascular Tone-Regulating Genes
,”
Am. J. Pathol.
0002-9440,
167
(
2
), pp.
609
618
.
66.
Cheng
,
C.
,
van Haperen
,
R.
,
de Waard
,
M.
,
van Damme
,
L. C. A.
,
Tempel
,
D.
,
Hanemaaijer
,
L.
,
van Cappellen
,
G. W. A.
,
Bos
,
J.
,
Slager
,
C. J.
,
Duncker
,
D. J.
,
van der Steen
,
A. F. W.
,
de Crom
,
R.
, and
Krams
,
R.
, 2005, “
Shear Stress Affects the Intracellular Distribution of eNOS: Direct Demonstration by a Novel in Vivo Technique
,”
Blood
0006-4971,
106
(
12
), pp.
3691
3698
.
67.
de Winther
,
M. P.
,
Kanters
,
E.
,
Kraal
,
G.
, and
Hofker
,
M. H.
, 2005, “
NF-κB Signaling in Atherogenesis
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
(
5
), pp.
904
914
.
68.
Tak
,
P. P.
, and
Firestein
,
G. S.
, 2001, “
NF-κB: A Key Role in Inflammatory Diseases
,”
J. Clin. Invest.
0021-9738,
107
(
1
), pp.
7
11
.
69.
Hou
,
J.
,
Baichwal
,
V.
, and
Cao
,
Z.
, 1994, “
Regulatory Elements and Transcription Factors Controlling Basal and Cytokine-Induced Expression of the Gene Encoding Intercellular Adhesion Molecule 1
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
91
(
24
), pp.
11641
11645
.
70.
Neish
,
A. S.
,
Read
,
M. A.
,
Thanos
,
D.
,
Pine
,
R.
,
Maniatis
,
T.
, and
Collins
,
T.
, 1995, “
Endothelial Interferon Regulatory Factor 1 Cooperates With NF-KB As a Transcriptional Activator of Vascular Cell Adhesion Molecule 1
,”
Mol. Cell. Biol.
0270-7306,
15
(
5
), pp.
2558
2569
.
71.
Read
,
M. A.
,
Whitley
,
M. Z.
,
Williams
,
A. J.
,
Collins
,
T.
, 1994, “
NF-κB and IκBα: An Inducible Regulatory System in Endothelial Activation
,”
J. Exp. Med.
0022-1007,
179
(
2
), pp.
503
512
.
72.
Dai
,
G.
,
Kaazempur-Mofrad
,
M. R.
,
Natarajan
,
S.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Blackman
,
B. R.
,
Kamm
,
R. D.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
, 2004, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived From Atherosclerosis-Susceptible and -Resistant Regions of Human Vasculature
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
41
), pp.
14871
14876
.
73.
Garcia-Cardena
,
G.
,
Comander
,
J.
,
Anderson
,
K. R.
,
Blackman
,
B. R.
, and
Gimbrone
,
M. A.
, Jr.
, 2001, “
Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
(
8
), pp.
4478
4485
.
74.
Resnick
,
N.
, and
Gimbrone
,
M. A.
, Jr.
, 1995, “
Hemodynamic Forces are Complex Regulators of Endothelial Gene Expression
,”
FASEB J.
0892-6638,
9
(
10
), pp.
874
882
.
75.
Mohan
,
S.
,
Mohan
,
N.
, and
Sprague
,
E. A.
, 1997, “
Differential Activation of NF-κB in Human Aortic Endothelial Cells Conditioned to Specific Flow Environments
,”
Am. J. Physiol.
0002-9513,
273
(
2
), pp.
C572
C578
.
76.
Partridge
,
J.
,
Carlsen
,
H.
,
Enesa
,
K.
,
Chaudhury
,
H.
,
Zakkar
,
M.
,
Luong
,
L.
,
Kinderlerer
,
A.
,
Johns
,
M.
,
Blomhoff
,
R.
,
Mason
,
J. C.
,
Haskard
,
D. O.
, and
Evans
,
P. C.
, 2007, “
Laminar Shear Stress Acts as a Switch to Regulate Divergent Functions of NF-κB in Endothelial Cells
,”
FASEB J.
0892-6638,
21
(
13
), pp.
3553
3561
.
77.
Tsou
,
J. K.
,
Gower
,
R. M.
,
Ting
,
H. J.
,
Schaff
,
U. Y.
,
Insana
,
M. F.
,
Passerini
,
A. G.
, and
Simon
,
S. I.
, 2008, “
Spatial Regulation of Inflammation by Human Aortic Endothelial Cells in a Linear Gradient of Shear Stress
,”
Microcirculation
,
15
(
4
), pp.
311
323
.
78.
Morigi
,
M.
,
Zoja
,
C.
,
Figliuzzi
,
M.
,
Foppolo
,
M.
,
Micheletti
,
G.
,
Bontempelli
,
M.
,
Saronni
,
M.
,
Remuzzi
,
G.
, and
Remuzzi
,
A.
, 1995, “
Fluid Shear Stress Modulates Surface Expression of Adhesion Molecules by Endothelial Cells
,”
Blood
0006-4971,
85
(
7
), pp.
1696
1703
.
79.
Nagel
,
T.
,
Resnick
,
N.
,
Atkinson
,
W. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1994, “
Shear Stress Selectively Upregulates Intercellular Adhesion Molecule-1 Expression in Cultured Human Vascular Endothelial Cells
,”
J. Clin. Invest.
0021-9738,
94
(
2
), pp.
885
891
.
80.
Sampath
,
R.
,
Kukielka
,
G. L.
,
Smith
,
C. W.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
, 1995, “
Shear Stress-Mediated Changes in the Expression of Leukocyte Adhesion Receptors on Human Umbilical Vein Endothelial Cells in Vitro
,”
Ann. Biomed. Eng.
0090-6964,
23
(
3
), pp.
247
256
.
81.
Tsuboi
,
H.
,
Ando
,
J.
,
Korenaga
,
R.
,
Takada
,
Y.
, and
Kamiya
,
A.
, 1995, “
Flow Stimulates ICAM-1 Expression Time and Shear Stress Dependently in Cultured Human Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
0006-291X,
206
(
3
), pp.
988
996
.
82.
Topper
,
J. N.
,
Cai
,
J.
,
Falb
,
D.
, and
Gimbrone
,
M. A.
, Jr.
, 1996, “
Identification of Vascular Endothelial Genes Differentially Responsive to Fluid Mechanical Stimuli: Cyclooxygenase-2, Manganese Superoxide Dismutase, and Endothelial Cell Nitric Oxide Synthase Are Selectively Up-Regulated by Steady Laminar Shear Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
93
(
19
), pp.
10417
10422
.
83.
Korenaga
,
R.
,
Ando
,
J.
,
Kosaki
,
K.
,
Isshiki
,
M.
,
Takada
,
Y.
, and
Kamiya
,
A.
, 1997, “
Negative Transcriptional Regulation of the VCAM-1 Gene by Fluid Shear Stress in Murine Endothelial Cells
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
273
(
5
), pp.
C1506
C1515
.
84.
Bergh
,
N.
,
Ulfhammer
,
E.
,
Glise
,
K.
,
Jern
,
S.
, and
Karlsson
,
L.
, 2009, “
Influence of TNF-α and Biomechanical Stress on Endothelial Anti- and Prothrombotic Genes
,”
Biochem. Biophys. Res. Commun.
0006-291X,
385
(
3
), pp.
314
318
.
85.
Ando
,
J.
,
Tsuboi
,
H.
,
Korenaga
,
R.
,
Takada
,
Y.
,
Toyama-Sorimachi
,
N.
,
Miyasaka
,
M.
, and
Kamiya
,
A.
, 1994, “
Shear Stress Inhibits Adhesion of Cultured Mouse Endothelial Cells to Lymphocytes by Downregulating VCAM-1 Expression
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
267
(
3
), pp.
C679
C687
.
86.
Chen
,
C. C.
, and
Manning
,
A. M.
, 1995, “
Transcriptional Regulation of Endothelial Cell Adhesion Molecules: A Dominant Role for NF-κB
,”
Agents Actions Suppl.
0379-0363,
47
, pp.
135
141
.
87.
Passerini
,
A. G.
,
Polacek
,
D. C.
,
Shi
,
C.
,
Francesco
,
N. M.
,
Manduchi
,
E.
,
Grant
,
G. R.
,
Pritchard
,
W. F.
,
Powell
,
S.
,
Chang
,
G. Y.
,
Stoeckert
,
C. J.
, Jr.
, and
Davies
,
P. F.
, 2004, “
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
8
), pp.
2482
2487
.
88.
Resnick
,
N.
,
Yahav
,
H.
,
Schubert
,
S.
,
Wolfovitz
,
E.
, and
Shay
,
A.
, 2000, “
Signalling Pathways in Vascular Endothelium Activated by Shear Stress: Relevance to Atherosclerosis
,”
Curr. Opin. Lipidol.
0957-9672,
11
(
2
), pp.
167
177
.
89.
Brooks
,
A. R.
,
Lelkes
,
P. I.
, and
Rubanyi
,
G. M.
, 2002, “
Gene Expression Profiling of Human Aortic Endothelial Cells Exposed to Disturbed Flow and Steady Laminar Flow
,”
Physiol. Genomics
1094-8341,
9
(
1
), pp.
27
41
.
90.
McKinney
,
V. Z.
,
Rinker
,
K. D.
, and
Truskey
,
G. A.
, 2006, “
Normal and Shear Stresses Influence the Spatial Distribution of Intracellular Adhesion Molecule-1 Expression in Human Umbilical Vein Endothelial Cells Exposed to Sudden Expansion Flow
,”
J. Biomech.
0021-9290,
39
(
5
), pp.
806
817
.
91.
Blackman
,
B. R.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
, 2002, “
A New in Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
397
407
.
92.
Helmlinger
,
G.
,
Geiger
,
R. V.
,
Schreck
,
S.
, and
Nerem
,
R. M.
, 1991, “
Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
2
), pp.
123
131
.
93.
Himburg
,
H. A.
,
Dowd
,
S. E.
, and
Friedman
,
M. H.
, 2007, “
Frequency-Dependent Response of the Vascular Endothelium to Pulsatile Shear Stress
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
1
), pp.
H645
H653
.
You do not currently have access to this content.