Applying tissue-engineered cartilage in a clinical setting requires noninvasive evaluation to detect the maturity of the cartilage. Magnetic resonance imaging (MRI) of articular cartilage has been widely accepted and applied clinically in recent years. In this study, we evaluated the negative fixed-charge density (nFCD) of tissue-engineered cartilage using gadolinium-enhanced MRI and determined the relationship between nFCD and biomechanical properties. To reconstruct cartilage tissue, articular chondrocytes from bovine humeral heads were embedded in agarose gel and cultured in vitro for up to 4 weeks. The nFCD of the cartilage was determined using the MRI gadolinium exclusion method. The equilibrium modulus was determined using a compressive stress relaxation test, and the dynamic modulus was determined by a dynamic compression test. The equilibrium compressive modulus and dynamic modulus of the tissue-engineered cartilage increased with an increase in culture time. The nFCD value—as determined with the [Gd-DTPA2] measurement using the MRI technique—increased with culture time. In the regression analysis, nFCD showed significant correlations with equilibrium compressive modulus and dynamic modulus. From these results, gadolinium-enhanced MRI measurements can serve as a useful predictor of the biomechanical properties of tissue-engineered cartilage.

1.
Lee
,
R. C.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Roylance
,
D. K.
, 1981, “
Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
280
292
.
2.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
3.
Chawla
,
K.
,
Klein
,
T. J.
,
Schumacher
,
B. L.
,
Jadin
,
K. D.
,
Shah
,
B. H.
,
Nakagawa
,
K.
,
Wong
,
V. W.
,
Chen
,
A. C.
,
Masuda
,
K.
, and
Sah
,
R. L.
, 2007, “
Short-Term Retention of Labeled Chondrocyte Subpopulations in Stratified Tissue-Engineered Cartilaginous Constructs Implanted In Vivo in Mini-Pigs
,”
Tissue Eng.
1076-3279,
13
(
7
), pp.
1525
1537
.
4.
Chen
,
G.
,
Sato
,
T.
,
Ushida
,
T.
,
Ochiai
,
N.
, and
Tateishi
,
T.
, 2004, “
Tissue Engineering of Cartilage Using a Hybrid Scaffold of Synthetic Polymer and Collagen
,”
Tissue Eng.
1076-3279,
10
(
3–4
), pp.
323
330
.
5.
Langer
,
R. S.
, and
Vacanti
,
J. P.
, 1999, “
Tissue Engineering: The Challenges Ahead
,”
Sci. Am.
0036-8733,
280
, pp.
86
89
.
6.
Pei
,
M.
,
Seidel
,
J.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
, 2002, “
Growth Factors for Sequential Cellular De- and Re-Differentiation in Tissue Engineering
,”
Biochem. Biophys. Res. Commun.
0006-291X,
294
, pp.
149
154
.
7.
Burgkart
,
R.
,
Glaser
,
C.
,
Hyhlik-Durr
,
A.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
, 2001, “
Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis: Accuracy, Precision, and Diagnostic Value
,”
Arthritis Rheum.
0004-3591,
44
, pp.
2072
2077
.
8.
McCauley
,
T. R.
, and
Disler
,
D. G.
, 2001, “
Magnetic Resonance Imaging of Articular Cartilage of the Knee
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
9
, pp.
2
8
.
9.
Shapiro
,
E. M.
,
Borthakur
,
A.
,
Kaufman
,
J. H.
,
Leigh
,
J. S.
, and
Reddy
,
R.
, 2001, “
Water Distribution Patterns Inside Bovine Articular Cartilage as Visualized by 1H Magnetic Resonance Imaging
,”
Osteoarthritis Cartilage
1063-4584,
9
, pp.
533
538
.
10.
Fragonas
,
E.
,
Mlynárik
,
V.
,
Jellús
,
V.
,
Micali
,
F.
,
Piras
,
A.
,
Toffanin
,
R.
,
Rizzo
,
R.
, and
Vittur
,
F.
, 1998, “
Correlation Between Biochemical Composition and Magnetic Resonance Appearance of Articular Cartilage
,”
Osteoarthritis Cartilage
1063-4584,
6
, pp.
24
32
.
11.
Nieminen
,
M. T.
,
Rieppo
,
J.
,
Töyräs
,
J.
,
Hakumaki
,
J. M.
,
Silvennoinen
,
J.
,
Hyttinen
,
M. M.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2001, “
T2 Relaxation Reveals Spatial Collagen Architecture in Articular Cartilage: A Comparative Quantitative MRI and Polarized Light Microscopic Study
,”
Magn. Reson. Med.
0740-3194,
46
, pp.
487
493
.
12.
Nissi
,
M. J.
,
Rieppo
,
J.
,
Töyräs
,
J.
,
Laasanen
,
M. S.
,
Kiviranta
,
I.
,
Jurvelin
,
J. S.
, and
Nieminen
,
M. T.
, 2006, “
T(2) Relaxation Time Mapping Reveals Age- and Species-Related Diversity of Collagen Network Architecture in Articular Cartilage
,”
Osteoarthritis Cartilage
1063-4584,
14
, pp.
1265
1271
.
13.
Xia
,
Y.
,
Moody
,
J. B.
, and
Alhadlaq
,
H.
, 2002, “
Orientational Dependence of T2 Relaxation in Articular Cartilage: A Microscopic MRI (μMRI) Study
,”
Magn. Reson. Med.
0740-3194,
48
, pp.
460
469
.
14.
Bashir
,
A.
,
Gray
,
M. L.
, and
Burstein
,
D.
, 1996, “
Gd-DTPA2− as a Measure of Cartilage Degradation
,”
Magn. Reson. Med.
0740-3194,
36
, pp.
665
673
.
15.
Bashir
,
A.
,
Gray
,
M. L.
,
Hartke
,
J.
, and
Burstein
,
D.
, 1999, “
Nondestructive Imaging of Human Cartilage Glycosaminoglycan Concentration by MRI
,”
Magn. Reson. Med.
0740-3194,
41
, pp.
857
865
.
16.
Potter
,
K.
,
Butler
,
J. J.
,
Horton
,
W. E.
, and
Spencer
,
R. G.
, 2000, “
Response of Engineered Cartilage Tissue to Biochemical Agents as Studied by Proton Magnetic Resonance Microscopy
,”
Arthritis Rheum.
0004-3591,
43
, pp.
1580
1590
.
17.
Chen
,
C. T.
,
Fishbein
,
K. W.
,
Torzilli
,
P. A.
,
Hilger
,
A.
,
Spencer
,
R. G.
, and
Horton
,
W. E.
, Jr.
, 2003, “
Matrix Fixed-Charge Density as Determined by Magnetic Resonance Microscopy of Bioreactor-Derived Hyaline Cartilage Correlates With Biochemical and Biomechanical Properties
,”
Arthritis Rheum.
0004-3591,
48
, pp.
1047
1056
.
18.
Ramaswamy
,
S.
,
Uluer
,
M. C.
,
Leen
,
S.
,
Bajaj
,
P.
,
Fishbein
,
K. W.
, and
Spencer
,
R. G.
, 2008, “
Noninvasive Assessment of Glycosaminoglycan Production in Injectable Tissue-Engineered Cartilage Constructs Using Magnetic Resonance Imaging
,”
Tissue Engineering Part C: Methods
,
14
, pp.
243
249
.
19.
Miyata
,
S.
,
Numano
,
T.
,
Homma
,
K.
,
Tateishi
,
T.
, and
Ushida
,
T.
, 2007, “
Feasibility of Noninvasive Evaluation of Biophysical Properties of Tissue-Engineered Cartilage by Using Quantitative MRI
,”
J. Biomech.
0021-9290,
40
, pp.
2990
2998
.
20.
Miyata
,
S.
,
Homma
,
K.
,
Numano
,
T.
,
Furukawa
,
K.
,
Tateishi
,
T.
,
Ushida
,
T.
, 2006, “
Assessment of Fixed Charge Density in Regenerated Cartilage by Gd-DTPA-Enhanced MRI
,”
Magn. Reson. Med. Sci.
,
5
, pp.
73
78
.
21.
Miyata
,
S.
,
Tateishi
,
T.
, and
Ushida
,
T.
, 2008, “
Influence of Cartilaginous Matrix Accumulation on Viscoelastic Response of Chondrocyte/Agarose Constructs Under Dynamic Compressive and Shear Loading
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
5
), p.
051016
.
22.
Miyata
,
S.
,
Tateishi
,
T.
,
Furukawa
,
K.
, and
Ushida
,
T.
, 2005, “
Influence of Structure and Composition on Dynamic Visco-Elastic Property of Cartilaginous Tissue: Criteria for Classification Between Hyaline Cartilage and Fibrocartilage Based on Mechanical Function
,”
JSME Int. J., Ser. C
1340-8062,
48
, pp.
547
554
.
23.
Benya
,
P. D.
, and
Shaffer
,
J. D.
, 1982, “
Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels
,”
Cell
0092-8674,
30
, pp.
215
224
.
24.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
,
Kimura
,
J. H.
, and
Hunziker
,
E. B.
, 1992, “
Chondrocytes in Agarose Culture Synthesize a Mechanically Functional Extracellular Matrix
,”
J. Orthop. Res.
0736-0266,
10
, pp.
745
758
.
25.
Mauck
,
R. L.
,
Nicoll
,
S. B.
,
Seyhan
,
S. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2003, “
Synergistic Action of Growth Factors and Dynamic Loading for Articular Cartilage Tissue Engineering
,”
Tissue Eng.
1076-3279,
9
, pp.
597
611
.
26.
Kurkijärvi
,
J. E.
,
Nissi
,
M. J.
,
Kiviranta
,
I.
,
Jurvelin
,
J. S.
, and
Nieminen
,
M. T.
, 2004, “
Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) and T2 Characteristics of Human Knee Articular Cartilage: Topographical Variation and Relationships to Mechanical Properties
,”
Magn. Reson. Med.
0740-3194,
52
, pp.
41
46
.
27.
Samosky
,
J. T.
,
Burstein
,
D.
,
Grimson
,
W. E.
,
Howe
,
R.
,
Martin
,
S.
, and
Gray
,
M. L.
, 2005, “
Spatially-Localized Correlation of dGEMRIC-Measured GAG Distribution and Mechanical Stiffness in the Human Tibial Plateau
,”
J. Orthop. Res.
0736-0266,
23
, pp.
93
101
.
28.
Nieminen
,
M. T.
,
Töyräs
,
J.
,
Laasanen
,
M. S.
,
Silvennoinen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2004, “
Prediction of Biomechanical Properties of Articular Cartilage With Quantitative Magnetic Resonance Imaging
,”
J. Biomech.
0021-9290,
37
, pp.
321
328
.
29.
Nissi
,
M. J.
,
Töyräs
,
J.
,
Laasanen
,
M. S.
,
Rieppo
,
J.
,
Saarakkala
,
S.
,
Lappalainen
,
R.
,
Jurvelin
,
J. S.
, and
Nieminen
,
M. T.
, 2004, “
Proteoglycan and Collagen Sensitive MRI Evaluation of Normal and Degenerated Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
22
, pp.
557
564
.
30.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2003, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
0021-9290,
36
, pp.
1373
1379
.
31.
Nissi
,
M. J.
,
Rieppo
,
J.
,
Töyräs
,
J.
,
Laasanen
,
M. S.
,
Kiviranta
,
I.
,
Nieminen
,
M. T.
, and
Jurvelin
,
J. S.
, 2007, “
Estimation of Mechanical Properties of Articular Cartilage With MRI—dGEMRIC, T2 and T1 Imaging in Different Species With Variable Stages of Maturation
,”
Osteoarthritis Cartilage
1063-4584,
15
, pp.
1141
1148
.
You do not currently have access to this content.