During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerebral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism, and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are as follows: (1) Folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding.

1.
Chi
,
J. G.
,
Dooling
,
E. C.
, and
Gilles
,
F. H.
, 1977, “
Gyral Development of the Human Brain
,”
Ann. Neurol.
0364-5134,
1
, pp.
86
93
.
2.
Welker
,
W.
, 1990, “
Why Does Cerebral Cortex Fissure and Fold? A Review of Determinants of Gyri and Sulci
,”
Cerebral Cortex
,
E. G.
Jones
and
A.
Peters
, eds.,
Plenum
,
New York
, pp.
3
136
.
3.
Nakamura
,
M.
,
Nestor
,
P. G.
,
McCarley
,
R. W.
,
Levitt
,
J. J.
,
Hsu
,
L.
,
Kawashima
,
T.
,
Niznikiewicz
,
M.
, and
Shenton
,
M. E.
, 2007, “
Altered Orbitofrontal Sulcogyral Pattern in Schizophrenia
,”
Brain
0006-8950,
130
, pp.
693
707
.
4.
Nordahl
,
C. W.
,
Dierker
,
D.
,
Mostafavi
,
I.
,
Schumann
,
C. M.
,
Rivera
,
S. M.
,
Amaral
,
D. G.
, and
Van Essen
,
D. C.
, 2007, “
Cortical Folding Abnormalities in Autism Revealed by Surface-Based Morphometry
,”
J. Neurosci.
0270-6474,
27
, pp.
11725
11735
.
5.
Pang
,
T.
,
Atefy
,
R.
, and
Sheen
,
V.
, 2008, “
Malformations of Cortical Development
,”
Neurologist
1074-7931,
14
, pp.
181
191
.
6.
Hofman
,
M. A.
, 1989, “
On the Evolution and Geometry of the Brain in Mammals
,”
Prog. Neurobiol.
0301-0082,
32
, pp.
137
158
.
7.
Richman
,
D. P.
,
Stewart
,
R. M.
,
Hutchinson
,
J. W.
, and
Caviness
,
V. S.
, Jr.
, 1975, “
Mechanical Model of Brain Convolutional Development
,”
Science
0036-8075,
189
, pp.
18
21
.
8.
Barron
,
D. H.
, 1950, “
An Experimental Analysis of Some Factors Involved in the Development of the Fissure Pattern of the Cerebral Cortex
,”
J. Exp. Zool.
0022-104X,
113
, pp.
553
581
.
9.
Van Essen
,
D. C.
, 1997, “
A Tension-Based Theory of Morphogenesis and Compact Wiring in the Central Nervous System
,”
Nature (London)
0028-0836,
385
, pp.
313
318
.
10.
Hilgetag
,
C. C.
, and
Barbas
,
H.
, 2006, “
Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex
,”
PLOS Comput. Biol.
1553-734X,
2
(
3
), pp.
146
159
.
11.
Chada
,
S.
,
Lamoureux
,
P.
,
Buxbaum
,
R. E.
, and
Heidemann
,
S. R.
, 1997, “
Cytomechanics of Neurite Outgrowth From Chick Brain Neurons
,”
J. Cell Sci.
,
110
, pp.
1179
1186
.
12.
Lamoureux
,
P.
,
Buxbaum
,
R. E.
, and
Heidemann
,
S. R.
, 1989, “
Direct Evidence That Growth Cones Pull
,”
Nature (London)
0028-0836,
340
, pp.
159
162
.
13.
Xu
,
G.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
, 2009, “
Residual Stress in the Adult Mouse Brain
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
, pp.
253
262
.
14.
Purves
,
D.
,
Augustine
,
G. J.
,
Fitzpatrick
,
D.
,
Hall
,
W. C.
,
LaMantia
,
A. -S.
,
McNamara
,
J. O.
, and
White
,
L. E.
, 2008,
Neuroscience
,
4th ed.
,
Sinauer Associates
,
Sunderland, MA
.
15.
Barnette
,
A. R.
,
Neil
,
J. J.
,
Kroenke
,
C. D.
,
Griffith
,
J. L.
,
Epstein
,
A. A.
,
Bayly
,
P. V.
,
Knutsen
,
A. K.
, and
Inder
,
T. E.
, 2009, “
Characterization of Brain Development in the Ferret via MRI
,”
Pediatr. Res.
0031-3998,
66
, pp.
80
84
.
16.
Neal
,
J.
,
Takahashi
,
M.
,
Silva
,
M.
,
Tiao
,
G.
,
Walsh
,
C. A.
, and
Sheen
,
V. L.
, 2007, “
Insights Into the Gyrification of Developing Ferret Brain by Magnetic Resonance Imaging
,”
J. Anat.
0021-8782,
210
, pp.
66
77
.
17.
Smart
,
I. H.
, and
McSherry
,
G. M.
, 1986, “
Gyrus Formation in the Cerebral Cortex of the Ferret. II. Description of the Internal Histological Changes
,”
J. Anat.
0021-8782,
147
, pp.
27
43
.
18.
Smart
,
I. H.
, and
McSherry
,
G. M.
, 1986, “
Gyrus Formation in the Cerebral Cortex in the Ferret. I. Description of the External Changes
,”
J. Anat.
0021-8782,
146
, pp.
141
152
.
19.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer
,
New York
.
20.
Zamir
,
E. A.
, and
Taber
,
L. A.
, 2004, “
Material Properties and Residual Stress in the Stage 12 Chick Heart During Cardiac Looping
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
823
830
.
21.
Alexander
,
G. M.
, and
Godwin
,
D. W.
, 2005, “
Presynaptic Inhibition of Corticothalamic Feedback by Metabotropic Glutamate Receptors
,”
J. Neurophysiol.
0022-3077,
94
, pp.
163
175
.
22.
Huang
,
H.
,
Zhang
,
J.
,
Wakana
,
S.
,
Zhang
,
W.
,
Ren
,
T.
,
Richards
,
L. J.
,
Yarowsky
,
P.
,
Donohue
,
P.
,
Graham
,
E.
,
van Zijl
,
P. C. M.
, and
Mori
,
S.
, 2006, “
White and Gray Matter Development in Human Fetal, Newborn and Pediatric Brains
,”
Neuroimage
1053-8119,
33
, pp.
27
38
.
23.
Beaulieu
,
C.
, 2002, “
The Basis of Anisotropic Water Diffusion in the Nervous System—A Technical Review
,”
NMR Biomed.
0952-3480,
15
, pp.
435
455
.
24.
Kroenke
,
C. D.
,
Taber
,
E. N.
,
Leigland
,
L. A.
,
Knutsen
,
A. K.
, and
Bayly
,
P. V.
, 2009, “
Regional Patterns of Cerebral Cortical Differentiation Determined by Diffusion Tensor MRI
,”
Cereb. Cortex
1047-3211,
19
, pp.
2916
2929
.
25.
Neil
,
J. J.
,
Shiran
,
S. I.
,
McKinstry
,
R. C.
,
Schefft
,
G. L.
,
Snyder
,
A. Z.
,
Almli
,
C. R.
,
Akbudak
,
E.
,
Aronovitz
,
J. A.
,
Miller
,
J. P.
,
Lee
,
B. C.
, and
Conturo
,
T. E.
, 1998, “
Normal Brain in Human Newborns: Apparent Diffusion Coefficient and Diffusion Anisotropy Measured by Using Diffusion Tensor MR Imaging
,”
Radiology
0033-8419,
209
, pp.
57
66
.
26.
Petersen
,
N. O.
,
Mcconnaughey
,
W. B.
, and
Elson
,
E. L.
, 1982, “
Dependence of Locally Measured Cellular Deformability on Position on the Cell, Temperature, and Cytochalasin B
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
79
, pp.
5327
5331
.
27.
Harding
,
J. W.
, and
Sneddon
,
I. N.
, 1945, “
The Elastic Stresses Produced by the Indentation of the Plane Surface of a Semi-Infinite Elastic Solid by a Rigid Punch
,”
Proc. Cambridge Philos. Soc.
0068-6735,
41
, pp.
16
26
.
28.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
, pp.
455
467
.
29.
Taber
,
L. A.
, and
Perucchio
,
R.
, 2000, “
Modeling Heart Development
,”
J. Elast.
0374-3535,
61
, pp.
165
197
.
30.
Taber
,
L. A.
, 2008, “
Theoretical Study of Beloussov’s Hyper-Restoration Hypothesis for Mechanical Regulation of Morphogenesis
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
427
441
.
31.
Voigt
,
T.
, 1989, “
Development of Glial Cells in the Cerebral Wall of Ferrets: Direct Tracing of Their Transformation From Radial Glia Into Astrocytes
,”
J. Comp. Neurol.
0021-9967,
289
, pp.
74
88
.
32.
Toro
,
R.
, and
Burnod
,
Y.
, 2005, “
A Morphogenetic Model for the Development of Cortical Convolutions
,”
Cereb. Cortex
1047-3211,
15
, pp.
1900
1913
.
33.
Raghavan
,
R.
,
Lawton
,
W.
,
Ranjan
,
S. R.
, and
Viswanathan
,
R. R.
, 1997, “
A Continuum Mechanics-Based Model for Cortical Growth
,”
J. Theor. Biol.
0022-5193,
187
, pp.
285
296
.
34.
Todd
,
P. H.
, 1982, “
A Geometric Model for the Cortical Folding Pattern of Simple Folded Brains
,”
J. Theor. Biol.
0022-5193,
97
, pp.
529
538
.
35.
Nie
,
J.
,
Guo
,
L.
,
Li
,
G.
,
Faraco
,
C.
,
Stephen Miller
,
L.
, and
Liu
,
T.
, 2010, “
A Computational Model of Cerebral Cortex Folding
,”
J. Theor. Biol.
0022-5193,
264
, pp.
467
478
.
36.
Beloussov
,
L. V.
, 1998,
The Dynamic Architecture of a Developing Organism: An Interdisciplinary Approach to the Development of Organisms
,
1st ed.
,
Kluwer
,
Dordrecht
.
You do not currently have access to this content.