Recent work has illuminated differences in carotid artery blood flow rate dynamics of older versus young adults. To what degree flow waveform shape, and indeed the use of measured versus assumed flow rates, affects the simulated hemodynamics of older adult carotid bifurcations has not been elucidated. Image-based computational fluid dynamics models of N=9 normal, older adult carotid bifurcations were reconstructed from magnetic resonance angiography. Subject-specific hemodynamics were computed by imposing each individual’s inlet and outlet flow rates measured by cine phase-contrast magnetic resonance imaging or by imposing characteristic young and older adult flow waveform shapes adjusted to cycle-averaged flow rates measured or allometrically scaled to the inlet and outlet areas. Despite appreciable differences in the measured versus assumed flow conditions, the locations and extents of low wall shear stress and elevated relative residence time were broadly consistent; however, the extent of elevated oscillatory shear index was substantially underestimated, more by the use of assumed cycle-averaged flow rates than the assumed flow waveform shape. For studies of individual vessels, use of a characteristic flow waveform shape is likely sufficient, with some benefit offered by scaling to measured cycle-averaged flow rates. For larger-scale studies of many vessels, ranking of cases according to presumed hemodynamic or geometric risk is robust to the assumed flow conditions.

1.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
0276-5047,
5
(
3
), pp.
293
302
.
2.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
483
497
.
3.
Holdsworth
,
D. W.
,
Norley
,
C. J.
,
Frayne
,
R.
,
Steinman
,
D. A.
, and
Rutt
,
B. K.
, 1999, “
Characterization of Common Carotid Artery Blood-Flow Waveforms in Normal Human Subjects
,”
Physiol. Meas.
,
20
(
3
), pp.
219
240
.
4.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
, 2005, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
(
4
), pp.
477
488
.
5.
Marshall
,
I.
,
Papathanasopoulou
,
P.
, and
Wartolowska
,
K.
, 2004, “
Carotid Flow Rates and Flow Division at the Bifurcation in Healthy Volunteers
,”
Physiol. Meas.
,
25
(
3
), pp.
691
697
.
6.
Hoi
,
Y.
,
Wasserman
,
B. A.
,
Xie
,
Y. J.
,
Najjar
,
S. S.
,
Ferruci
,
L.
,
Lakatta
,
E. G.
,
Gerstenblith
,
G.
, and
Steinman
,
D. A.
, 2010, “
Characterization of Volumetric Flow Rate Waveforms at the Carotid Bifurcations of Older Adults
,”
Physiol. Meas.
,
31
(
3
), pp.
291
302
.
7.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
, 2008, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
0140-0118,
46
(
11
), pp.
1097
1112
.
8.
Lee
,
S. W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
0039-2499,
39
(
8
), pp.
2341
2347
.
9.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is It Reasonable to Assume Fully Developed Flow?
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
371
379
.
10.
Lee
,
S. W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2009, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), pp.
061013
.
11.
Krams
,
R.
,
Bambi
,
G.
,
Guidi
,
F.
,
Helderman
,
F.
,
van der Steen
,
A. F.
, and
Tortoli
,
P.
, 2005, “
Effect of Vessel Curvature on Doppler Derived Velocity Profiles and Fluid Flow
,”
Ultrasound Med. Biol.
0301-5629,
31
(
5
), pp.
663
671
.
12.
Ford
,
M. D.
,
Xie
,
Y. J.
,
Wasserman
,
B. A.
, and
Steinman
,
D. A.
, 2008, “
Is Flow in the Common Carotid Artery Fully Developed?
,”
Physiol. Meas.
,
29
(
11
), pp.
1335
1349
.
13.
Thomas
,
J. B.
,
Antiga
,
L.
,
Che
,
S. L.
,
Milner
,
J. S.
,
Steinman
,
D. A.
,
Spence
,
J. D.
, and
Rutt
,
B. K.
, 2005, “
Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults: Implications for Geometric Risk of Atherosclerosis
,”
Stroke
0039-2499,
36
(
11
), pp.
2450
2456
.
14.
Himburg
,
H. A.
,
Dowd
,
S. E.
, and
Friedman
,
M. H.
, 2007, “
Frequency-Dependent Response of the Vascular Endothelium to Pulsatile Shear Stress
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
1
), pp.
H645
653
.
15.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Putman
,
C. M.
, and
Alperin
,
N.
, 2008, “
Flow-Area Relationship in Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
29
(
5
), pp.
585
594
.
16.
Thomas
,
J. B.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2003, “
Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
2
), pp.
132
141
.
17.
Glor
,
F. P.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Augst
,
A. D.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Verdonck
,
P. R.
, and
Xu
,
X. Y.
, 2003, “
Reproducibility Study of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Carotid Bifurcation Flow
,”
Ann. Biomed. Eng.
0090-6964,
31
(
2
), pp.
142
151
.
18.
Wake
,
A. K.
,
Oshinski
,
J. N.
,
Tannenbaum
,
A. R.
, and
Giddens
,
D. P.
, 2009, “
Choice of In Vivo Versus Idealized Velocity Boundary Conditions Influences Physiologically Relevant Flow Patterns in a Subject-Specific Simulation of Flow in the Human Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
2
), pp.
021013
.
19.
Chen
,
J.
, and
Lu
,
X. Y.
, 2004, “
Numerical Investigation of the Non-Newtonian Blood Flow in a Bifurcation Model With a Non-Planar Branch
,”
J. Biomech.
0021-9290,
37
(
12
), pp.
1899
1911
.
20.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2007, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
273
278
.
21.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
845
856
.
22.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
Ma. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and Its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
(
1
), pp.
17
32
.
You do not currently have access to this content.