How much and how the thrombus supports the wall of an abdominal aortic aneurysm (AAA) is unclear. While some previous studies have indicated that thrombus lacks the mechanical integrity to support much load compared with the aneurysm wall, others have shown that removing thrombus in computational AAA models drastically changes aneurysm wall stress. Histopathological studies have shown that thrombus properties vary through the thickness and it can be porous. The goal of this study is to explore the variations in thrombus properties, including the ability to isolate pressure from the aneurysm wall, incomplete attachment, and their effects on aneurysm wall stress, an important parameter in determining risk for rupture. An analytical model comprised of cylinders and two patient specific models were constructed with pressurization boundary conditions applied at the lumen or the thrombus/aneurysm wall interface (to simulate complete transmission of pressure through porous thrombus). Aneurysm wall stress was also calculated in the absence of thrombus. The potential importance of partial thrombus attachment was also analyzed. Pressurizing at either surface (lumen versus interface) made little difference to mean von Mises aneurysm wall stress values with thrombus completely attached (3.1% analytic, 1.2% patient specific) while thrombus presence reduced mean von Mises stress considerably (79% analytic, 40–46% patient specific) in comparison to models without it. Peak von Mises stresses were similarly influenced with pressurization surface differing slightly (3.1% analytic, 1.4% patient specific) and reductions in stress by thrombus presence (80% analytic, 28–37% patient specific). The case of partial thrombus attachment was investigated using a cylindrical model in which there was no attachment between the thrombus and aneurysm wall in a small area (10 deg). Applying pressure at the lumen resulted in a similar stress field to fully attached thrombus, whereas applying pressure at the interface resulted in a 42% increase in peak aneurysm wall stress. Taken together, these results show that the thrombus can have a wall stress reducing role even if it does not shield the aneurysm wall from direct pressurization—as long as the thrombus is fully attached to the aneurysm wall. Furthermore, the potential for porous thrombus to transmit pressure to the interface can result in a considerable increase in aneurysm wall stress in cases of partial attachment. In the search for models capable of accurately assessing the risk for rupture, the nature of the thrombus and its attachment to the aneurysm wall must be carefully assessed.

1.
1997,
Vascular Intervention: A Clinical Approach
,
B. A.
Perler
and
G. J.
Becker
, eds.,
Thieme Medical
,
New York
.
2.
Heron
,
M. P.
,
Hoyert
,
D. L.
,
Murphy
,
S. L.
,
Xu
,
J. Q.
,
Kochanek
,
K. D.
, and
Tejada-Vera
,
B.
, 2009, “
Deaths: Final Data for 2006
,” National Vital Statistics Report, 57(14), Table 10, p.
34
; see http://www.cdc.gov/NCHS/data/nvsr/nvsr57/nvsr57_14.pdfhttp://www.cdc.gov/NCHS/data/nvsr/nvsr57/nvsr57_14.pdf.
3.
Fillinger
,
M.
, 2007, “
Who Should We Operate on and How Do We Decide: Predicting Rupture and Survival in Patients With Aortic Aneurysm
,”
Semin Vasc. Surg.
0895-7967,
20
(
2
), pp.
121
127
.
4.
Vorp
,
D. A.
, 2007, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
40
(
9
), pp.
1887
1902
.
5.
Hans
,
S. S.
,
Jareunpoon
,
O.
,
Balasubramaniam
,
M.
, and
Zelenock
,
G. B.
, 2005, “
Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
41
(
4
), pp.
584
588
.
6.
Satta
,
J.
,
Laara
,
E.
, and
Juvonen
,
T.
, 1996, “
Intraluminal Thrombus Predicts Rupture of an Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
23
(
4
), pp.
737
739
.
7.
Schurink
,
G. W.
,
van Baalen
,
J. M.
,
Visser
,
M. J.
, and
van Bockel
,
J. H.
, 2000, “
Thrombus Within an Aortic Aneurysm Does Not Reduce Pressure on the Aneurysmal Wall
,”
J. Vasc. Surg.
0741-5214,
31
, pp.
501
506
.
8.
Thubrikar
,
M. J.
,
Robicsek
,
F.
,
Labrosse
,
M.
,
Chervenkoff
,
V.
, and
Fowler
,
B. L.
, 2003, “
Effect of Thrombus on Abdominal Aortic Aneurysm Wall Dilation and Stress
,”
J. Cardiovasc. Surg.
0021-9509,
44
(
1
), pp.
67
77
.
9.
Mower
,
W. R.
,
Quinones
,
W. J.
, and
Gambhir
,
S. S.
, 1997, “
Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress
,”
J. Vasc. Surg.
0741-5214,
26
(
4
), pp.
602
608
.
10.
Wang
,
D. H.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2001, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
536
539
.
11.
Gasser
,
T. C.
,
Gorgulu
,
G.
,
Folkesson
,
M.
, and
Swedenborg
,
J.
, 2008, “
Failure Properties of Intraluminal Thrombus in Abdominal Aortic Aneurysm Under Static and Pulsating Mechanical Loads
,”
J. Vasc. Surg.
0741-5214,
48
(
1
), pp.
179
188
.
12.
Li
,
Z. -Y.
,
U-King-Im
,
J.
,
Tang
,
T. Y.
,
Soh
,
E.
,
See
,
T. C.
, and
Gillard
,
J. H.
, 2008, “
Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
47
(
5
), pp.
928
935
.
13.
Adolph
,
R.
,
Vorp
,
D. A.
,
Steed
,
D. L.
,
Webster
,
M. W.
,
Kameneva
,
M. V.
, and
Watkins
,
S. C.
, 1997, “
Cellular Content and Permeability of Intraluminal Thrombus in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
25
(
5
), pp.
916
926
.
14.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
de Tolosa
,
E. M. C.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
, 2006, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
3010
3016
.
15.
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2002, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
36
(
3
), pp.
598
604
.
16.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
0021-9290,
33
(
4
), pp.
475
482
.
17.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
, 2004, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
1078-5884,
28
(
2
), pp.
168
176
.
18.
Vande Geest
,
J. P.
, 2005,
Towards an Improved Rupture Potential Index for Abdominal Aortic Aneurysms: Anisotropic Constitutive Modeling and Noninvasive Wall Strength Estimation
,
University of Pittsburgh
,
Pittsburgh, PA
.
19.
Doyle
,
B.
,
Callanan
,
A.
, and
McGloughlin
,
T.
, 2007, “
A Comparison of Modelling Techniques for Computing Wall Stress in Abdominal Aortic Aneurysms
,”
Biomed. Eng. Online
1475-925X,
6
(
1
), p.
38
.
20.
Hinnen
,
J. W.
,
Koning
,
O. H.
,
Visser
,
M. J.
, and
Van Bockel
,
H. J.
, 2005, “
Effect of Intraluminal Thrombus on Pressure Transmission in the Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
42
(
6
), pp.
1176
1182
.
21.
Takagi
,
H.
,
Yoshikawa
,
S.
,
Mizuno
,
Y.
,
Matsuno
,
Y.
,
Umeda
,
Y.
,
Fukumoto
,
Y.
, and
Mori
,
Y.
, 2005, “
Intrathrombotic Pressure of a Thrombosed Abdominal Aortic Aneurysm
,”
Ann. Vasc. Surg.
0890-5096,
19
(
1
), pp.
108
112
.
22.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
, 2009, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
3
), p.
031001
.
23.
Rodríguez
,
J. F.
,
Martufi
,
G.
,
Doblare
,
M.
, and
Finol
,
E. A.
, 2009, “
The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
37
(
11
), pp.
2218
2221
.
24.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
,
Baldwin
,
A. L.
, and
Wilson
,
L. M.
, 1998, “
Identification and Determination of Material Properties for Porohyperelastic Analysis of Large Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
188
194
.
25.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Fillinger
,
M. F.
, 2006, “
Non-Invasive Determination of Zero-Pressure Geometry of Arterial Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
34
(
9
), pp.
1414
1419
.
You do not currently have access to this content.