Mechanical and computational models consisting of flow channels with convergent and oscillating constrictions have been applied to study the dynamics of human vocal fold vibration. To the best of our knowledge, no mechanical model has been studied using a material substitute with similar physical properties to the human vocal fold for surgical experimentation. In this study, we design and develop a mechanical larynx with agarose as a vocal fold substitute, and assess its suitability for surgical experimentation. Agarose is selected as a substitute for the vocal fold as it exhibits similar nonlinear hyperelastic characteristics to biological soft tissue. Through uniaxial compression and extension tests, we determined that agarose of 0.375% concentration most closely resembles the vocal fold mucosa and ligament of a 20-year old male for small tensile strain with an R2 value of 0.9634 and root mean square error of 344.05±39.84Pa. Incisions of 10 mm lengthwise and 3 mm in depth were created parallel to the medial edge on the superior surface of agar phantom. These were subjected to vibrations of 80, 130, and 180 Hz, at constant amplitude of 0.9 mm over a period of 10 min each in the mechanical larynx model. Lateral expansion of the incision was observed to be most significant for the lower frequency of 80 Hz. This model serves as a basis for future assessments of wound closure techniques during microsurgery to the vocal fold.

1.
Titze
,
I. R.
, 2006,
The Myoelastic Aerodynamic Theory of Phonation
,
National Centre for Voice and Speech
,
Iowa City, IA
.
2.
Scherer
,
R. C.
,
Shinwari
,
D.
,
De Witt
,
K. J.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
, 2001, “
Intraglottal Pressure Profiles for a Symmetric and Oblique Glottis With a Divergence Angle of 10 Degrees
,”
J. Acoust. Soc. Am.
0001-4966,
109
(
4
), pp.
1616
1630
.
3.
Alipour
,
F.
, and
Scherer
,
R. C.
, 2001, “
Effects of Oscillation of a Mechanical Hemilarynx Model on Mean Transglottal Pressures and Flows
,”
J. Acoust. Soc. Am.
0001-4966,
110
(
3
), pp.
1562
1569
.
4.
Kucinschi
,
B. R.
,
Scherer
,
R. C.
,
DeWitt
,
K. J.
, and
Ng
,
T. T. M.
, 2006, “
An Experimental Analysis of the Pressures and Flows Within a Driven Mechanical Model of Phonation
,”
J. Acoust. Soc. Am.
0001-4966,
119
(
5
), pp.
3011
3021
.
5.
Chan
,
R. W.
, and
Siegmund
,
T.
, 2004, “
Vocal Fold Tissue Failure: Preliminary Data and Constitutive Modeling
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
4
), pp.
466
474
.
6.
Chan
,
R. W.
,
Fu
,
M.
,
Young
,
L.
, and
Tirunagari
,
N.
, 2007, “
Relative Contributions of Collagen and Elastin to Elasticity of the Vocal Fold Under Tension
,”
Ann. Biomed. Eng.
0090-6964,
35
(
8
), pp.
1471
1483
.
7.
Chan
,
R. W.
,
Siegmund
,
T. H.
,
Zhang
,
K.
,
Tirunagari
,
N.
, and
Fu
,
M.
, 2004,
Structural Constitutive Characterization of the Vocal Fold: Modeling the Fibrous and the Interstitial Matrix Proteins
,
American Society of Mechanical Engineers
,
Anaheim, CA
.
8.
Chan
,
R. W.
, and
Titze
,
I. R.
, 1999, “
Viscoelastic Shear Properties of Human Vocal Fold Mucosa: Measurement Methodology and Empirical Results
,”
J. Acoust. Soc. Am.
0001-4966,
106
(
4
), pp.
2008
2021
.
9.
Chan
,
R. W.
, and
Titze
,
I. R.
, 2000, “
Viscoelastic Shear Properties of Human Vocal Fold Mucosa: Theoretical Characterization Based on Constitutive Modeling
,”
J. Acoust. Soc. Am.
0001-4966,
107
(
1
), pp.
565
580
.
10.
Zhang
,
K.
,
Siegmund
,
T.
, and
Chan
,
R. W.
, 2006, “
A Constitutive Model of the Human Vocal Fold Cover for Fundamental Frequency Regulation
,”
J. Acoust. Soc. Am.
0001-4966,
119
(
2
), pp.
1050
1062
.
11.
Zhang
,
K.
,
Siegmund
,
T.
, and
Chan
,
R. W.
, 2007, “
A Two-Layer Composite Model of the Vocal Fold Lamina Propria for Fundamental Frequency Regulation
,”
J. Acoust. Soc. Am.
0001-4966,
122
(
2
), pp.
1090
1101
.
12.
Anseth
,
K. S.
,
Bowman
,
C. N.
, and
Brannon-Peppas
,
L.
, 1996, “
Mechanical Properties of Hydrogels and Their Experimental Determination
,”
Biomaterials
0142-9612,
17
(
17
), pp.
1647
1657
.
13.
Ahearne
,
M.
,
Yang
,
Y.
, and
Liu
,
K. K.
, 2008, “
Mechanical Characterisation of Hydrogels for Tissue Engineering Applications
,”
Topics in Tissue Engineering
,
R. R. N.
Ashammakhi
and
F.
Chiellini
, eds., pp.
1
15
; retrieved from http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol4/abstracts/ahearne.pdfhttp://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol4/abstracts/ahearne.pdf.
14.
Ahearne
,
M.
,
Yang
,
Y.
,
El Haj
,
A. J.
,
Then
,
K. Y.
, and
Liu
,
K. -K.
, 2005, “
Characterizing the Viscoelastic Properties of Thin Hydrogel-Based Constructs for Tissue Engineering Applications
,”
J. R. Soc., Interface
1742-5689,
2
(
5
), pp.
455
463
.
15.
Choo
,
J. Q.
,
Lau
,
D. P. C.
,
Chui
,
C. K.
,
Yang
,
T.
, and
Teoh
,
S. H.
, 2008, “
Experimental Setup of Hemilarynx Model for Microlaryngeal Surgery Applications
,”
The 13th International Conference on Biomedical Engineering
,
Springer
,
Singapore
.
16.
Eriksen
,
L. C.
, and
Rivlin
,
R. S.
, 1954, “
Large Elastic Deformations of Homogenous Anisotropic Materials
,”
Arch. Ration. Mech. Anal.
0003-9527,
3
, pp.
281
301
.
17.
Chui
,
C.
,
Kobayashi
,
E.
,
Chen
,
X.
,
Hisada
,
T.
, and
Sakuma
,
I.
, 2007, “
Transversely Isotropic Properties of Porcine Liver Tissue: Experiments and Constitutive Modelling
,”
Med. Biol. Eng. Comput.
0140-0118,
45
(
1
), pp.
99
106
.
18.
Jiang
,
J. J.
,
Raviv
,
J. R.
, and
Hanson
,
D. G.
, 2001, “
Comparison of the Phonation-Related Structures Among Pig, Dog, White-Tailed Deer, and Human Larynges
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894,
110
(
12
), pp.
1120
1125
.
19.
Ruty
,
N.
,
Pelorson
,
X.
,
Van Hirtum
,
A.
,
Lopez-Arteaga
,
I.
, and
Hirschberg
,
A.
, 2007, “
An In Vitro Setup to Test the Relevance and the Accuracy of Low-Order Vocal Folds Models
,”
J. Acoust. Soc. Am.
0001-4966,
121
(
1
), pp.
479
490
.
20.
Titze
,
I. R.
, and
Hunter
,
E. J.
, 2007, “
A Two-Dimensional Biomechanical Model of Vocal Fold Posturing
,”
J. Acoust. Soc. Am.
0001-4966,
121
(
4
), pp.
2254
2260
.
You do not currently have access to this content.