Mechanical properties of red blood cells (RBCs) play an important role in regulating cellular functions. Many recent researches suggest that the cell properties or deformability may be used as a diagnostic indicator for the onset and progression of some human diseases. Although optical stretcher (OS) has emerged as an effective tool to investigate the cell mechanics of RBCs, little is known about the deformation behavior of RBCs in an OS. To address this problem, the mechanical model proposed in our previous work is extended in this paper to describe the mechanical responses of RBCs in the OS. With this model, the mechanical responses, such as the tension distribution, the effect of cell radius, and the deformed cell shapes, can be predicted. It is shown that the results obtained from our mechanical model are in good agreement with the experimental data, which demonstrates the validity of the developed model. Based on the derived model, the mechanical properties of RBCs can be further obtained. In conclusion, this study indicates that the developed mechanical model can be used to predict the deformation responses of RBCs during optical stretching and has potential biomedical applications such as characterizing cell properties and distinguishing abnormal cells from normal ones.

1.
Mohandas
,
N.
, and
Gallagher
,
P. G.
, 2008, “
Red Cell Membrane: Past, Present, and Future
,”
Blood
0006-4971,
112
, pp.
3939
3948
.
2.
Lenormand
,
G.
,
Henon
,
S.
,
Richert
,
A.
,
Simeon
,
J.
, and
Gallet
,
F.
, 2001, “
Direct Measurement of the Area Expansion and Shear Moduli of the Human Red Blood Cell Membrane Skeleton
,”
Biophys. J.
0006-3495,
81
, pp.
43
56
.
3.
Nash
,
G. B.
,
Johnson
,
C. S.
, and
Meiselman
,
H. J.
, 1984, “
Mechanical Properties of Oxygenated Red Blood Cells in Sickle Cell (HbSS) Disease
,”
Blood
0006-4971,
63
, pp.
73
82
.
4.
Glenister
,
F. K.
,
Coppel
,
R. L.
,
Cowman
,
A. F.
,
Mohands
,
N.
, and
Cooke
,
B. M.
, 2002, “
Contribution of Parasite Proteins to Altered Mechanical Properties of Malaria-Infected Red Blood Cells
,”
Blood
0006-4971,
99
, pp.
1060
1063
.
5.
Suresh
,
S.
,
Spatz
,
J.
,
Mills
,
J. P.
,
Micoulet
,
A.
,
Dao
,
M.
,
Lim
,
C. T.
,
Beil
,
M.
, and
Seufferlein
,
T.
, 2005, “
Connections Between Single-Cell Biomechanics and Human Disease States: Gastrointestinal Cancer and Malaria
,”
Acta Biomater.
1742-7061,
1
, pp.
15
30
.
6.
Fornal
,
M.
,
Korbut
,
R. A.
,
Lekka
,
M.
,
Pyka-Fosciak
,
G.
,
Wizner
,
B.
,
Styczen
,
J.
, and
Grodzicki
,
T.
, 2008, “
Rheological Properties of Erythrocytes in Patients With High Risk of Cardiovascular Disease
,”
Clin. Hemorheol. Microcirc.
,
39
, pp.
213
219
.
7.
Lekka
,
M.
,
Fornal
,
M.
,
Pyka-Fosciak
,
G.
,
Lebed
,
K.
,
Wizner
,
B.
,
Grodzicki
,
T.
, and
Styczen
,
J.
, 2005, “
Erythrocyte Stiffness Probed Using Atomic Force Microscope
,”
Biorheology
0006-355X,
42
, pp.
307
317
.
8.
Meier
,
W.
,
Paulitschke
,
M.
,
Lerche
,
D.
,
Schmidt
,
G.
, and
Zoellner
,
K.
, 1991, “
Action of rHuEpo on Mechanical Membrane Properties of Red Blood Cells in Children With End-Stage Renal Disease
,”
Nephrol. Dial. Transplant.
,
6
, pp.
110
116
.
9.
Lee
,
S. S.
,
Kim
,
N. J.
,
Sun
,
K.
,
Dobbe
,
J. G.
,
Hardeman
,
M. R.
,
Antaki
,
J. F.
,
Ahn
,
K. H.
, and
Lee
,
S. J.
, 2006, “
Association Between Arterial Stiffness and the Deformability of Red Blood Cells (RBCs)
,”
Clin. Hemorheol. Microcirc.
,
34
, pp.
475
481
.
10.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Mahmood
,
H.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
, 2001, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
0006-3495,
81
, pp.
767
784
.
11.
Bareil
,
P. B.
,
Sheng
,
Y. L.
, and
Chiou
,
A.
, 2007, “
Calculation of Spherical Red Blood Cell Deformation in a Dual-Beam Optical Stretcher
,”
Opt. Express
1094-4087,
15
, pp.
16029
16034
.
12.
Bareil
,
P. B.
,
Sheng
,
Y. L.
, and
Chiou
,
A.
, 2006, “
Local Stress Distribution on the Surface of a Spherical Cell in an Optical Stretcher
,”
Opt. Express
1094-4087,
14
, pp.
12503
12509
.
13.
Tan
,
Y. H.
,
Sun
,
D.
,
Huang
,
W. H.
, and
Cheng
,
S. H.
, 2008, “
Mechanical Modeling of Biological Cells in Microinjection
,”
IEEE Trans. Nanobiosci.
1536-1241,
7
, pp.
257
266
.
14.
Daily
,
B.
, and
Elson
,
E. L.
, 1984, “
Cell Poking: Determination of the Elastic Area Compressibility Modulus of the Erythrocyte Membrane
,”
Biophys. J.
0006-3495,
45
, pp.
671
682
.
15.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2003, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
2259
2280
.
16.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1986,
Theory of Elasticity
,
Pergamon
,
New York
.
17.
Feng
,
W. W.
, and
Yang
,
W. H.
, 1973, “
On the Contact Problem of an Inflated Spherical Nonlinear Membrane
,”
ASME J. Appl. Mech.
0021-8936,
40
, pp.
209
214
.
18.
Tan
,
Y. H.
,
Sun
,
D.
,
Wang
,
J. Z.
, and
Huang
,
W. H.
, 2010, “
Mechanical Characterization of Human Red Blood Cells Under Different Osmotic Conditions by Robotic Manipulation With Optical Tweezers
,”
IEEE Trans. Biomed. Eng.
0018-9294, in press.
19.
Evans
,
E. A.
, and
Skalak
,
R.
, 1980,
Mechanics and Thermodynamics of Biomembranes
,
CRC
,
Boca Raton
.
20.
Katz
,
M.
, 2002,
Introduction to Geometrical Optics
,
World Scientific
,
River Edge, NJ
.
21.
Nemoto
,
S.
, and
Togo
,
H.
, 1998, “
Axial Force Acting on a Dielectric Sphere in a Focused Laser Beam
,”
Appl. Opt.
0003-6935,
37
, pp.
6386
6394
.
22.
Liu
,
Y. -P.
,
Li
,
C.
,
Liu
,
K. -K.
, and
Lai
,
A. C. K.
, 2006, “
The Deformation of an Erythrocyte Under the Radiation Pressure by Optical Stretch
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
830
836
.
23.
Fausett
,
L.
, 2003,
Numerical Methods: Algorithms and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
24.
de Haas
,
K. H.
,
Blom
,
C.
,
Van den Ende
,
D.
,
Duits
,
M. H. G.
, and
Mellema
,
J.
, 1997, “
Deformation of Giant Lipid Bilayer Vesicles in Shear Flow
,”
Phys. Rev. E
1063-651X,
56
, pp.
7132
7137
.
25.
Tan
,
Y. H.
,
Sun
,
D.
, and
Huang
,
W. H.
, 2009, “
Mechanical Modeling Characterization of Biological Cells Using Microrobotics Cell Injection Test Bed
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
4337
4342
.
26.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. -J.
, 2002, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
0021-9290,
35
, pp.
177
187
.
27.
Evans
,
E. A.
, and
Hochmuth
,
R. M.
, 1976, “
Membrane Viscoelasticity
,”
Biophys. J.
0006-3495,
16
, pp.
1
11
.
28.
Hochmuth
,
R. M.
, and
Waugh
,
R. E.
, 1987, “
Erythrocyte Membrane Elasticity and Viscosity
,”
Annu. Rev. Physiol.
0066-4278,
49
, pp.
209
219
.
29.
Xie
,
Y.
,
Sun
,
D.
,
Liu
,
C.
,
Tse
,
H. Y.
, and
Cheng
,
S. H.
, 2010, “
A Force Control Approach to a Robot-Assisted Cell Microinjection System
,”
Int. J. Robot. Res.
0278-3649,
29
(
2
).
30.
Huang
,
H. B.
,
Sun
,
D.
,
Mills
,
J. K.
, and
Cheng
,
S. H.
, 2009, “
Robotics Cell Injection System With Vision and Force Control: Towards Automatic Batch Biomanipulation
,”
IEEE Trans. Robot.
,
25
, pp.
727
737
.
31.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Rao
,
J. Y.
, and
Gimzewski
,
J. K.
, 2007, “
Nanomechanical Analysis of Cells From Cancer Patients
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
780
783
.
You do not currently have access to this content.