In this paper, a new neuromusculoskeletal simulation strategy is proposed. It is based on a cascade control approach with an inner muscular-force control loop and an outer joint-position control loop. The originality of the work is located in the optimization criterion used to distribute forces between synergistic and antagonistic muscles. The cost function and the inequality constraints depend on an estimation of the muscle fiber length and its time derivative. The advantages of a such criterion are exposed by theoretical analysis and numerical tests. The simulation model used in the numerical tests consists in an anthropomorphic arm model composed by two joints and six muscles. Each muscle is modeled as a second-order dynamical system including activation and contraction dynamics. Contraction dynamics is represented using a classical Hill’s model.

1.
Zajac
,
F. E.
, 2002, “
Understanding Muscle Coordination of the Human Leg With Dynamical Simulations
,”
J. Biomech.
0021-9290,
35
(
8
), pp.
1011
1018
.
2.
Wright
,
I. C.
,
Neptune
,
R. R.
,
Van Den Bogert
,
A. J.
, and
Nigg
,
B. M.
, 2000, “
The Effects of Ankle Compliance and Flexibility on Ankle Sprains
,”
Med. Sci. Sports Exercise
0195-9131,
32
, pp.
260
265
.
3.
Wright
,
I.
,
Neptune
,
R.
,
van den Bogert
,
A.
, and
Nigg
,
B.
, 2000, “
The Influence of Foot Positioning on Ankle Sprains
,”
J. Biomech.
0021-9290,
33
(
5
), pp.
513
519
.
4.
McLean
,
S. G.
,
Huang
,
X.
,
Su
,
A.
, and
van den Bogert
,
A. J.
, 2004, “
Sagittal Plane Biomechanics Cannot Injure the ACL During Sidestep Cutting
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
8
), pp.
828
838
.
5.
Gerritsen
,
K.
,
Van den Bogert
,
A.
,
Hulliger
,
M.
, and
Zernicke
,
R.
, 1998, “
Intrinsic Muscle Properties Facilitate Locomotor Control—A Computer Simulation Study
,”
Motor Control
1087-1640,
2
, pp.
206
220
.
6.
Komura
,
T.
,
Nagano
,
A.
,
Leung
,
H.
, and
Shinagawa
,
Y.
, 2005, “
Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum Model
,”
IEEE Trans. Biomed. Eng.
0018-9294,
52
(
9
), pp.
1502
1513
.
7.
Goldberg
,
S. R.
,
Õunpuu
,
S.
, and
Delp
,
S. L.
, 2003, “
The Importance of Swing-Phase Initial Conditions in Stiff-Knee Gait
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1111
1116
.
8.
Piazza
,
S. J.
, 2006, “
Muscle-Driven Forward Dynamic Simulations for the Study of Normal and Pathological Gait
,”
J. Neuroeng. Rehabil.
,
3
(
5
), pp.
1
7
.
9.
Sasaki
,
K.
, and
Neptune
,
R. R.
, 2006, “
Muscle Mechanical Work and Elastic Energy Utilization During Walking and Running Near the Preferred Gait Transition Speed
,”
Gait and Posture
0966-6362,
23
(
3
), pp.
383
390
.
10.
Sasaki
,
K.
, and
Neptune
,
R. R.
, 2006, “
Differences in Muscle Function During Walking and Running at the Same Speed
,”
J. Biomech.
0021-9290,
39
(
11
), pp.
2005
2013
.
11.
Yamaguchi
,
G.
, and
Zajac
,
F.
, 1990, “
Restoring Unassisted Natural Gait to Paraplegics Via Functional Neuromuscular Stimulation: A Computer Simulation Study
,”
IEEE Trans. Biomed. Eng.
0018-9294,
37
(
9
), pp.
886
902
.
12.
Seireg
,
A.
, and
Arvikar
,
R.
, 1989,
Biomechanical Analysis of the Musculoskeletal Structure for Medicine and Sports
,
Hemisphere
,
New York
.
13.
Crowninshield
,
R.
, and
Brand
,
R. A.
, 1981, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
0021-9290,
14
(
11
), pp.
793
801
.
14.
Happee
,
R.
, and
der Helm
,
F. C. T. V.
, 1995, “
The Control of Shoulder Muscles During Goal Directed Movements, An Inverse Dynamic Analysis
,”
J. Biomech.
0021-9290,
28
(
10
), pp.
1179
1191
.
15.
Zajac
,
F.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
4
), pp.
359
411
.
16.
Anderson
,
F.
, and
Pandy
,
M.
, 2001, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
381
390
.
17.
Lloyd
,
D. G.
, and
Besier
,
T. F.
, 2003, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
0021-9290,
36
(
6
), pp.
765
776
.
18.
Koo
,
T. K.
, and
Mak
,
A. F.
, 2005, “
Feasibility of Using EMG Driven Neuromusculoskeletal Model for Prediction of Dynamic Movement of the Elbow
,”
J. Electromyogr Kinesiol.
,
15
(
1
), pp.
12
26
.
19.
Li
,
L.
,
Tong
,
K.
,
Hu
,
X.
,
Hung
,
L.
, and
Koo
,
T.
, 2009, “
Incorporating Ultrasound Measured Musculotendon Parameters to Subject-Specific EMG-Driven Model to Simulate Voluntary Elbow Flexion for Persons After Stroke
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
24
(
1
), pp.
101
109
.
20.
Buchanan
,
T.
,
Lloyd
,
D.
,
Manal
,
K.
, and
Besier
,
T.
, 2004, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
1065-8483,
20
(
4
), pp.
367
395
.
21.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
, 2003, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
321
328
.
22.
Thelen
,
D. G.
, and
Anderson
,
F. C.
, 2006, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1107
1115
.
23.
Seth
,
A.
, and
Pandy
,
M.
, 2007, “
A Neuromusculoskeletal Tracking Method for Estimating Individual Muscle Forces in Human Movement
,”
J. Biomech.
0021-9290,
40
(
2
), pp.
356
366
.
24.
Collins
,
J. J.
, 1995, “
The Redundant Nature of Locomotor Optimization Laws
,”
J. Biomech.
0021-9290,
28
(
3
), pp.
251
267
.
25.
Cholewicki
,
J.
,
McGill
,
S. M.
, and
Norman
,
R.
, 1995, “
Comparison of Muscle Forces and Joint Load From an Optimization and EMG Assisted Lumbar Spine Model: Towards Development of a Hybrid Approach
,”
J. Biomech.
0021-9290,
28
(
3
), pp.
321
331
.
26.
Jinha
,
A.
,
Ait-Haddou
,
R.
, and
Herzog
,
W.
, 2006, “
Predictions of Co-Contraction Depend Critically on Degrees-of-Freedom in the Musculoskeletal Model
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1145
1152
.
27.
Ait-Haddou
,
R.
,
Binding
,
P.
, and
Herzog
,
W.
, 2000, “
Theoretical Considerations on Cocontraction of Sets of Agonistic and Antagonistic Muscles
,”
J. Biomech.
0021-9290,
33
(
9
), pp.
1105
1111
.
28.
Forster
,
E.
,
Simon
,
U.
,
Augat
,
P.
, and
Claes
,
L.
, 2004, “
Extension of a State-of-the-Art Optimization Criterion to Predict Co-Contraction
,”
J. Biomech.
0021-9290,
37
(
4
), pp.
577
581
.
29.
Baildon
,
R.
, and
Chapman
,
A.
, 1983, “
A New Approach to the Human Muscle Model
,”
J. Biomech.
0021-9290,
16
(
10
), pp.
803
809
.
30.
Hatze
,
H.
, 1981, “
Myocybernetic Control Models of Skeletal Muscle
,” Ph.D. thesis, University of South Africa, Pretoria, South Africa.
31.
Hill
,
A.
, 1938, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
0962-8452,
126
(
843
), pp.
136
195
.
32.
Riener
,
R.
,
Quintern
,
J.
, and
Schmidt
,
G.
, 1996, “
Biomechanical Model of the Human Knee Evaluated by Neuromuscular Stimulation
,”
J. Biomech.
0021-9290,
29
(
9
), pp.
1157
1167
.
33.
Winters
,
J. M.
, and
Stack
,
L.
, 1985, “
Analysis of Fundamental Human Movement Patterns Through the Use of In-Depth Antagonistic Muscle Models
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-32
(
10
), pp.
826
839
.
34.
Stroeve
,
S.
, 1999, “
Impedance Characteristics of a Neuromusculoskeletal Model of The Human Arm I. Posture Control
,”
Biol. Cybern.
0340-1200,
81
(
5–6
), pp.
475
494
.
35.
Buchanan
,
T. S.
, and
Shreeve
,
D. A.
, 1996, “
An Evaluation of Optimization Techniques for the Prediction of Muscle Activation Patterns During Isometric Tasks
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
4
), pp.
565
574
.
36.
Happee
,
R.
, 1994, “
Inverse Dynamic Optimization Including Muscular Dynamics, A New Simulation Method Applied to Goal Directed Movements
,”
J. Biomech.
0021-9290,
27
(
7
), pp.
953
960
.
37.
Isidori
,
A.
, 1995, “
Nonlinear Control Systems
,”
Communications and Control Engineering Series
, Vol.
II
,
Springer
,
New York
.
38.
Schappacher-Tilp
,
G.
,
Binding
,
P.
,
Braverman
,
E.
, and
Herzog
,
W.
, 2009, “
Velocity Dependent Cost Function for the Prediction of Force Sharing Among Synergistic Muscles in a One Degree of Freedom Model
,”
J. Biomech.
0021-9290,
42
(
5
), pp.
657
660
.
39.
Binding
,
P.
,
Jinha
,
A.
, and
Herzog
,
W.
, 2000, “
Analytic Analysis of the Force Sharing Among Synergistic Muscles in One- and Two-Degree-of-Freedom Models
,”
J. Biomech.
0021-9290,
33
(
11
), pp.
1423
1432
.
You do not currently have access to this content.