Different methods have been used to cross-validate cartilage thickness measurements from magnetic resonance images (MRIs); however, a majority of these methods rely on interpolated data points, regional mean and/or maximal thickness, or surface mean thickness for data analysis. Furthermore, the accuracy of MRI cartilage thickness measurements from commercially available software packages has not necessarily been validated and may lead to an under- or overestimation of cartilage thickness. The goal of this study was to perform a matching point-to-point validation of indirect cartilage thickness calculations using a magnetic resonance (MR) image data set with direct cartilage thickness measurements using biomechanical indentation testing at the same anatomical locations. Seven bovine distal femoral condyles were prepared and a novel phantom filled with dilute gadolinium solution was rigidly attached to each specimen. High resolution MR images were acquired, and thickness indentation analysis of the cartilage was performed immediately after scanning. Segmentation of the MR data and cartilage thickness calculation was performed using semi-automated software. Registration of MR and indentation data was performed using the fluid filled phantom. The inter- and intra-examiner differences of the measurements were also determined. A total of 105 paired MRI-indentation thickness data points were analyzed, and a significant correlation between them was found (r=0.88, p<0.0001). The mean difference (±std. dev.) between measurement techniques was 0.00±0.23mm, with Bland–Altman limits of agreement of 0.45 mm and −0.46 mm. The intra- and inter-examiner measurement differences were 0.03±0.22mm and 0.05±0.24mm, respectively. This study validated cartilage thickness measurements from MR images with thickness measurements from indentation by using a novel phantom to register the image-based and laboratory-based data sets. The accuracy of the measurements was comparable to previous cartilage thickness validation studies in literature. The results of this study will aid in validating a tool for clinical evaluation of in-vivo cartilage thickness.

1.
Eckstein
,
F.
,
Burstein
,
D.
, and
Link
,
T. M.
, 2006, “
Quantitative MRI of Cartilage and Bone: Degenerative Changes in Osteoarthritis
,”
NMR Biomed.
0952-3480,
19
(
7
), pp.
822
854
.
2.
Centers for Disease Control and Prevention (CDC)
, 2001, “
Prevalence of Disabilities and Associated Health Conditions Among Adults—United States, 1999
,”
MMWR Morb Mortal Wkly Rep.
0149-2195,
50
, pp.
120
125
.
3.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
, 2003, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,”
J. Biomech.
0021-9290,
36
(
12
), pp.
1785
1796
.
4.
Potter
,
H. G.
,
Linklater
,
J. M.
,
Allen
,
A. A.
,
Hannafin
,
J. A.
, and
Haas
,
S. B.
, 1998, “
Magnetic Resonance Imaging of Articular Cartilage in the Knee. An Evaluation With Use of Fast-Spin-Echo Imaging
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
80
(
9
), pp.
1276
1284
.
5.
Mosher
,
T. J.
, and
Dardzinski
,
B. J.
, 2004, “
Cartilage MRI T2 Relaxation Time Mapping: Overview and Applications
,”
Semin. Musculoskelet. Radiol.
,
08
(
4
), pp.
355
368
.
6.
Li
,
X.
,
Benjamin Ma
,
C.
,
Link
,
T. M.
,
Castillo
,
D. D.
,
Blumenkrantz
,
G.
,
Lozano
,
J.
,
Carballido-Gamio
,
J.
,
Ries
,
M.
, and
Majumdar
,
S.
, 2007, “
In Vivo T1ρ and T2 Mapping of Articular Cartilage in Osteoarthritis of the Knee Using 3T MRI
,”
Osteoarthritis Cartilage
1063-4584,
15
(
7
), pp.
789
797
.
7.
Kim
,
Y. J.
,
Jaramillo
,
D.
,
Millis
,
M. B.
,
Gray
,
M. L.
, and
Burstein
,
D.
, 2003, “
Assessment of Early Osteoarthritis in Hip Dysplasia With Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85-A
(
10
), pp.
1987
1992
.
8.
Williams
,
A.
,
Gillis
,
A.
,
Mckenzie
,
C.
,
Po
,
B.
,
Sharma
,
L.
,
Micheli
,
L.
,
Mckeon
,
B.
, and
Burstein
,
D.
, 2004, “
Glycosaminoglycan Distribution in Cartilage as Determined by Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC): Potential Clinical Applications
,”
AJR, Am. J. Roentgenol.
0361-803X,
182
(
1
), pp.
167
172
.
9.
Hunter
,
D. J.
,
Le Graverand
,
M. P.
, and
Eckstein
,
F.
, 2009, “
Radiologic Markers of Osteoarthritis Progression
,”
Curr. Opin. Rheumatol.
1040-8711,
21
(
2
), pp.
110
117
.
10.
Koo
,
S.
,
Gold
,
G. E.
, and
Andriacchi
,
T. P.
, 2005, “
Considerations in Measuring Cartilage Thickness Using MRI: Factors Influencing Reproducibility and Accuracy
,”
Osteoarthritis Cartilage
1063-4584,
13
(
9
), pp.
782
789
.
11.
McGibbon
,
C. A.
,
Bencardino
,
J.
,
Yeh
,
E. D.
, and
Palmer
,
W. E.
, 2003, “
Accuracy of Cartilage and Subchondral Bone Spatial Thickness Distribution From MRI
,”
J. Magn. Reson. Imaging
,
17
(
6
), pp.
703
715
.
12.
El-Khoury
,
G. Y.
,
Alliman
,
K. J.
,
Lundberg
,
H. J.
,
Rudert
,
M. J.
,
Brown
,
T. D.
, and
Saltzman
,
C. L.
, 2004, “
Cartilage Thickness in Cadaveric Ankles: Measurement With Double-Contrast Multi-Detector Row CT Arthrography Versus MR Imaging
,”
Radiology
0033-8419,
233
(
3
), pp.
768
773
.
13.
Graichen
,
H.
,
Jakob
,
J.
,
Von Eisenhart-Rothe
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
, 2003, “
Validation of Cartilage Volume and Thickness Measurements in the Human Shoulder With Quantitative Magnetic Resonance Imaging
,”
Osteoarthritis Cartilage
1063-4584,
11
(
7
), pp.
475
482
.
14.
Graichen
,
H.
,
Von Eisenhart-Rothe
,
R.
,
Vogl
,
T.
,
Englmeier
,
K. H.
, and
Eckstein
,
F.
, 2004, “
Quantitative Assessment of Cartilage Status in Osteoarthritis by Quantitative Magnetic Resonance Imaging: Technical Validation for Use in Analysis of Cartilage Volume and Further Morphologic Parameters
,”
Arthritis Rheum.
0004-3591,
50
(
3
), pp.
811
816
.
15.
Eckstein
,
F.
,
Hudelmaier
,
M.
,
Wirth
,
W.
,
Kiefer
,
B.
,
Jackson
,
R.
,
Yu
,
J.
,
Eaton
,
C. B.
, and
Schneider
,
E.
, 2006, “
Double Echo Steady State Magnetic Resonance Imaging of Knee Articular Cartilage at 3 Tesla: A Pilot Study for the Osteoarthritis Initiative
,”
Ann. Rheum. Dis.
0003-4967,
65
(
4
), pp.
433
441
.
16.
Peterfy
,
C. G.
,
Gold
,
G.
,
Eckstein
,
F.
,
Cicuttini
,
F.
,
Dardzinski
,
B.
, and
Stevens
,
R.
, 2006, “
MRI Protocols for Whole-Organ Assessment of the Knee in Osteoarthritis
,”
Osteoarthritis Cartilage
1063-4584,
14
, pp.
95
111
.
17.
Cohen
,
Z. A.
,
Mccarthy
,
D. M.
,
Kwak
,
S. D.
,
Legrand
,
P.
,
Fogarasi
,
F.
,
Ciaccio
,
E. J.
, and
Ateshian
,
G. A.
, 1999, “
Knee Cartilage Topography, Thickness, and Contact Areas From MRI: In-Vitro Calibration and In-Vivo Measurements
,”
Osteoarthritis Cartilage
1063-4584,
7
(
1
), pp.
95
109
.
18.
Eckstein
,
F.
,
Gavazzeni
,
A.
,
Sittek
,
H.
,
Haubner
,
M.
,
Losch
,
A.
,
Milz
,
S.
,
Englmeier
,
K. H.
,
Schulte
,
E.
,
Putz
,
R.
, and
Reiser
,
M.
, 1996, “
Determination of Knee Joint Cartilage Thickness Using Three-Dimensional Magnetic Resonance Chondro-Crassometry (3D MR-CCM)
,”
Magn. Reson. Med.
0740-3194,
36
(
2
), pp.
256
265
.
19.
Kladny
,
B.
,
Bail
,
H.
,
Swoboda
,
B.
,
Schiwy-Bochat
,
H.
,
Beyer
,
W. F.
, and
Weseloh
,
G.
, 1996, “
Cartilage Thickness Measurement in Magnetic Resonance Imaging
,”
Osteoarthritis Cartilage
1063-4584,
4
(
3
), pp.
181
186
.
20.
Kladny
,
B.
,
Martus
,
P.
,
Schiwy-Bochat
,
K. H.
,
Weseloh
,
G.
, and
Swoboda
,
B.
, 1999, “
Measurement of Cartilage Thickness in the Human Knee-Joint by Magnetic Resonance Imaging Using a Three-Dimensional Gradient-Echo Sequence
,”
Int. Orthop.
0341-2695,
23
(
5
), pp.
264
267
.
21.
Karvonen
,
R. L.
,
Negendank
,
W. G.
,
Fraser
,
S. M.
,
Mayes
,
M. D.
,
An
,
T.
, and
Fernandez-Madrid
,
F.
, 1990, “
Articular Cartilage Defects of the Knee: Correlation Between Magnetic Resonance Imaging and Gross Pathology
,”
Ann. Rheum. Dis.
0003-4967,
49
(
9
), pp.
672
675
.
22.
Muensterer
,
O. J.
,
Eckstein
,
F.
,
Hahn
,
D.
, and
Putz
,
R.
, 1996, “
Computer-Aided Three Dimensional Assessment of Knee-Joint Cartilage With Magnetic Resonance Imaging
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
11
(
5
), pp.
260
266
.
23.
Yeh
,
L. R.
,
Kwak
,
S.
,
Kim
,
Y. S.
,
Chou
,
D. S.
,
Muhle
,
C.
,
Skaf
,
A.
,
Trudell
,
D.
, and
Resnick
,
D.
, 1998, “
Evaluation of Articular Cartilage Thickness of the Humeral Head and the Glenoid Fossa by MR Arthrography: Anatomic Correlation in Cadavers
,”
Skeletal Radiol.
0364-2348,
27
(
9
), pp.
500
504
.
24.
Eckstein
,
F.
,
Westhoff
,
J.
,
Sittek
,
H.
,
Maag
,
K. P.
,
Haubner
,
M.
,
Faber
,
S.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
, 1998, “
In Vivo Reproducibility of Three-Dimensional Cartilage Volume and Thickness Measurements With MR Imaging
,”
AJR, Am. J. Roentgenol.
0361-803X,
170
(
3
), pp.
593
597
.
25.
Eckstein
,
F.
,
Adam
,
C.
,
Sittek
,
H.
,
Becker
,
C.
,
Milz
,
S.
,
Schulte
,
E.
,
Reiser
,
M.
, and
Putz
,
R.
, 1997, “
Non-Invasive Determination of Cartilage Thickness Throughout Joint Surfaces Using Magnetic Resonance Imaging
,”
J. Biomech.
0021-9290,
30
(
3
), pp.
285
289
.
26.
Haubner
,
M.
,
Eckstein
,
F.
,
Schnier
,
M.
,
Losch
,
A.
,
Sittek
,
H.
,
Becker
,
C.
,
Kolem
,
H.
,
Reiser
,
M.
, and
Englmeier
,
K. H.
, 1997, “
A Non-Invasive Technique for 3-Dimensional Assessment of Articular Cartilage Thickness Based on MRI. Part 2: Validation Using CT Arthrography
,”
Magn. Reson. Imaging
0730-725X,
15
(
7
), pp.
805
813
.
27.
Eckstein
,
F.
,
Schnier
,
M.
,
Haubner
,
M.
,
Priebsch
,
J.
,
Glaser
,
C.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
, 1998, “
Accuracy of Cartilage Volume and Thickness Measurements With Magnetic Resonance Imaging
,”
Clin. Orthop. Relat. Res.
0009-921X,
1
(
352
), pp.
137
148
.
28.
Naredo
,
E.
,
Acebes
,
C.
,
Moller
,
I.
,
Canillas
,
F.
,
De Agustin
,
J. J.
,
De Miguel
,
E.
,
Filippucci
,
E.
,
Iagnocco
,
A.
,
Moragues
,
C.
,
Tuneu
,
R.
,
Uson
,
J.
,
Garrido
,
J.
,
Delgado-Baeza
,
E.
, and
Saenz-Navarro
,
I.
, 2009, “
Ultrasound Validity in the Measurement of Knee Cartilage Thickness
,”
Ann. Rheum. Dis.
0003-4967,
68
, pp.
1322
1327
.
29.
Mathiesen
,
O.
,
Konradsen
,
L.
,
Torp-Pedersen
,
S.
, and
Jorgensen
,
U.
, 2004, “
Ultrasonography and Articular Cartilage Defects in the Knee: An In Vitro Evaluation of the Accuracy of Cartilage Thickness and Defect Size Assessment
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
12
(
5
), pp.
440
443
.
30.
Bowers
,
M. E.
,
Trinh
,
N.
,
Tung
,
G. A.
,
Crisco
,
J. J.
,
Kimia
,
B. B.
, and
Fleming
,
B. C.
, 2008, “
Quantitative MR Imaging Using ‘Livewire’ to Measure Tibiofemoral Articular Cartilage Thickness
,”
Osteoarthritis Cartilage
1063-4584,
16
(
10
), pp.
1167
1173
.
31.
Shrivastava
,
N.
,
Koff
,
M. F.
,
Abbot
,
A. E.
,
Mow
,
V. C.
,
Rosenwasser
,
M. P.
, and
Strauch
,
R. J.
, 2003, “
Simulated Extension Osteotomy of the Thumb Metacarpal Reduces Carpometacarpal Joint Laxity in Lateral Pinch
,”
J. Hand Surg. [Br]
,
28
(
5
), pp.
733
738
.
32.
Bland
,
J. M.
, and
Altman
,
D. G.
, 1986, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
0140-6736,
1
(
8476
), pp.
307
310
.
33.
Glüer
,
C. -C.
,
Blake
,
G.
,
Lu
,
Y.
,
Blunt
,
B. A.
,
Jergas
,
M.
, and
Genant
,
H. K.
, 1995, “
Accurate Assessment of Precision Errors: How to Measure the Reproducibility of Bone Densitometry Techniques
,”
Osteoporosis Int.
0937-941X,
5
(
4
), pp.
262
270
.
34.
Soslowsky
,
L. J.
,
Flatow
,
E. L.
,
Bigliani
,
L. U.
, and
Mow
,
V. C.
, 1992, “
Articular Geometry of the Glenohumeral Joint
,”
Clin. Orthop. Relat. Res.
0009-921X,
285
, pp.
181
190
.
35.
Raynauld
,
J. P.
,
Martel-Pelletier
,
J.
,
Berthiaume
,
M. J.
,
Beaudoin
,
G.
,
Choquette
,
D.
,
Haraoui
,
B.
,
Tannenbaum
,
H.
,
Meyer
,
J. M.
,
Beary
,
J. F.
,
Cline
,
G. A.
, and
Pelletier
,
J. P.
, 2006, “
Long Term Evaluation of Disease Progression Through the Quantitative Magnetic Resonance Imaging of Symptomatic Knee Osteoarthritis Patients: Correlation With Clinical Symptoms and Radiographic Changes
,”
Arthritis Res. Ther.
1478-6354,
8
(
1
), p.
R21
.
36.
Ding
,
C.
,
Martel-Pelletier
,
J.
,
Pelletier
,
J. P.
,
Abram
,
F.
,
Raynauld
,
J. P.
,
Cicuttini
,
F.
, and
Jones
,
G.
, 2008, “
Two-Year Prospective Longitudinal Study Exploring the Factors Associated With Change in Femoral Cartilage Volume in a Cohort Largely Without Knee Radiographic Osteoarthritis
,”
Osteoarthritis Cartilage
1063-4584,
16
(
4
), pp.
443
449
.
37.
Eckstein
,
F.
,
Wirth
,
W.
,
Hudelmaier
,
M.
,
Stein
,
V.
,
Lengfelder
,
V.
,
Cahue
,
S.
,
Marshall
,
M.
,
Prasad
,
P.
, and
Sharma
,
L.
, 2008, “
Patterns of Femorotibial Cartilage Loss in Knees With Neutral, Varus, and Valgus Alignment
,”
Arthritis Rheum.
0004-3591,
59
(
11
), pp.
1563
1570
.
You do not currently have access to this content.