The myocardium of the left ventricle (LV) of the heart comprises layers of muscle fibers whose orientation varies through the heart wall. Because of these fibers, accurate modeling of the myocardium stress-strain behavior requires models that are nonlinear, anisotropic, and time-varying. This article describes the development and testing of a material model of the canine LV myocardium, which will be used in ongoing simulations of the mechanics of the LV with fluid-structure interaction. The model assumes that myocardium deformation has two extreme states: one during which the muscle fibers are fully relaxed, and another during which the muscle fibers are fully contracted. During the second state, the “total” stresses are assumed to be the sum of “passive” stresses, which represent the fully relaxed muscle fibers, and “active” stresses, which are additional stresses due to the contraction of the muscle fibers. The canine LV myocardium is modeled as a transversely isotropic material for which material properties vary in the fiber and cross-fiber directions. The material behavior is considered to be hyperelastic and is modeled by a strain-energy density function in a manner that is an adaptation of an approach based on measurements of the stress-strain behavior of rabbit LV myocardia. A numerical method has been developed to calculate suitable parameter values for the passive material model using previous passive canine LV myocardium stress measurements and taking into account existing physical and numerical constraints. In the absence of published measurements of total canine LV myocardium stresses, a method has been developed to estimate these stresses from available passive and total rabbit LV myocardium stresses and then to calculate active material parameter values. Material parameter values were calculated for passive and active canine LV myocardium. Passive stresses calculated using the model compare well to previous stress measurements while active stresses calculated using the model compare well with those approximated from rabbit measurements. The adapted material model of the canine LV myocardium is deemed to be suitable for use in simulations of the operation of both idealized and realistic canine hearts. The estimated model parameter values can be easily revised to more appropriate ones if measurements of active canine LV myocardium stresses become available. The extension of this material model to a fully orthotropic one is also possible but determination of its parameters would require stress-stretch measurements in the fiber and both cross-fiber directions.

1.
Huyghe
,
J. M.
,
Van Campen
,
D. H.
,
Arts
,
T.
, and
Heethaar
,
R. M.
, 1991, “
A Two-Phase Finite Element Model of the Diastolic Left Ventricle
,”
J. Biomech.
0021-9290,
24
, pp.
527
538
.
2.
Opie
,
L. H.
, 2004,
Heart Physiology From Cell to Circulation
,
Lippincott
,
Philadelphia, PA
, Chap. 3.
3.
LeGrice
,
I. J.
,
Smaill
,
B. H.
,
Chai
,
L. Z.
,
Edgar
,
S. G.
,
Gavin
,
J. B.
, and
Hunter
,
P. J.
, 1995, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol.
0002-9513,
269
, pp.
H571
H582
.
4.
Nash
,
M. P.
, and
Hunter
,
P. J.
, 2000, “
Computational Mechanics of the Heart: From Tissue Structure to Ventricular Function
,”
J. Elast.
0374-3535,
61
, pp.
113
141
.
5.
Lanir
,
Y.
, 1979, “
A Structural Theory for the Homogenous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
0021-9290,
12
, pp.
423
436
.
6.
Usyk
,
T. P.
,
Mazhari
,
R.
, and
McCulloch
,
A. D.
, 2000, “
Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle
,”
J. Elast.
0374-3535,
61
, pp.
143
164
.
7.
Costa
,
K. D.
,
Holmes
,
J. W.
, and
McCulloch
,
A. D.
, 2001, “
Modelling Cardiac Mechanical Properties in Three Dimensions
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
1233
1250
.
8.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium: II.–Parameter Estimation
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
340
346
.
9.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
42
55
.
10.
Lin
,
D. H. S.
, and
Yin
,
F. C. P.
, 1998, “
A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
504
517
.
11.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
, 1993, “
Mechanics of Active Contraction in Cardiac Muscle: Part II–Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
82
90
.
12.
Dokos
,
S.
,
Smaill
,
B. H.
,
Young
,
A. A.
, and
LeGrice
,
I. J.
, 2002, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol.
0002-9513,
283
, pp.
H2650
H2659
.
13.
Novak
,
V. P.
,
Yin
,
F. C. P.
, and
Humphrey
,
J. D.
, 1994, “
Regional Mechanical Properties of Passive Myocardium
,”
J. Biomech.
0021-9290,
27
, pp.
403
412
.
14.
Bovendeerd
,
P. H. M.
,
Arts
,
T.
,
Delhaas
,
T.
,
Huyghe
,
J. M.
,
van Campen
,
D. H.
, and
Reneman
,
R. S.
, 1996, “
Regional Wall Mechanics in the Ischemic Left Ventricle: Numerical Modeling and Dog Experiments
,”
Am. J. Physiol.
0002-9513,
270
, pp.
H398
H410
.
15.
McCulloch
,
A. D.
, and
Mazhari
,
R.
, 2001, “
Regional Myocardial Mechanics: Integrative Computational Models of Flow-Function Relations
,”
J. Nucl. Cardiol.
1071-3581,
8
, pp.
506
519
.
16.
Kang
,
T.
, and
Yin
,
F. C. P.
, 1996, “
The Need to Account for Residual Strains and Composite Nature of Heart Wall in Mechanical Analyses
,”
Am. J. Physiol.
0002-9513,
271
, pp.
H947
H961
.
17.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium: I.–A New Functional Form
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
333
339
.
18.
Li
,
J. K.-J.
, 1996,
Comparative Cardiovascular Dynamics of Mammals
,
CRC
,
Boca Raton, FL
, Chap. 5.
19.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
20.
Criscione
,
J. C.
,
Douglas
,
A. S.
, and
Hunter
,
W. C.
, 2001, “
Physically Based Strain Invariant Set for Materials Exhibiting Transversely Isotropic Behavior
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
871
897
.
21.
ADINA R&D, Inc.
, 2008, “
Theory and Modeling Guide, Volume I: ADINA
,” Report No. ARD 08-7, ADINA R&D, Inc., Watertown, MA.
22.
Bertsekas
,
D. P.
, 1999,
Nonlinear Programming
,
Athena Scientific
,
Belmont, MA
.
23.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer-Verlag
,
New York, NY
.
24.
Omens
,
J. H.
,
May
,
K. D.
, and
McCulloch
,
A. D.
, 1991, “
Transmural Distribution of Three-Dimensional Strain in the Isolated Arrested Canine Left Ventricle
,”
Am. J. Physiol.
0002-9513,
261
, pp.
H918
H928
.
25.
Vetter
,
F. J.
, and
McCulloch
,
A. D.
, 2000, “
Three-Dimensional Stress and Strain in Passive Rabbit Left Ventricle: A Model Study
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
781
792
.
26.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Finite Element Implementation of a Generalize Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
, pp.
190
199
.
27.
Criscione
,
J. C.
,
McCulloch
,
A. D.
, and
Hunter
,
W. C.
, 2002, “
Constitutive Framework Optimized for Myocardium and Other High-Strain Laminar Materials With One Fiber Family
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1681
1702
.
You do not currently have access to this content.