Successful bone tissue engineering requires the understanding of cellular activity in three-dimensional (3D) architectures and how it compares to two-dimensional (2D) architecture. We developed a perfusion culture system that utilizes fluid flow to mechanically load a cell-seeded 3D scaffold. This study compared the gene expression of osteoblastic cells in 2D and 3D cultures, and the effects of mechanical loading on gene expression in 2D and 3D cultures. MC3T3-E1 osteoblastlike cells were seeded onto 2D glass slides and 3D calcium phosphate scaffolds and cultured statically or mechanically loaded with fluid flow. Gene expression of OPN and FGF-2 was upregulated at 24 h and 48 h in 3D compared with 2D static cultures, while collagen 1 gene expression was downregulated. In addition, while flow increased OPN in 2D culture at 48 h, it decreased both OPN and FGF-2 in 3D culture. In conclusion, gene expression is different between 2D and 3D osteoblast cultures under static conditions. Additionally, osteoblasts respond to shear stress differently in 2D and 3D cultures. Our results highlight the importance of 3D mechanotransduction studies for bone tissue engineering applications.

1.
Rubin
,
J.
,
Rubin
,
C.
, and
Jacobs
,
C. R.
, 2006, “
Molecular Pathways Mediating Mechanical Signaling in Bone
,”
Gene
0378-1119,
367
, pp.
1
16
.
2.
Iqbal
,
J.
, and
Zaidi
,
M.
, 2005, “
Molecular Regulation of Mechanotransduction
,”
Biochem. Biophys. Res. Commun.
0006-291X,
328
(
3
), pp.
751
755
.
3.
Vance
,
J.
,
Galley
,
S.
,
Liu
,
D. F.
, and
Donahue
,
S. W.
, 2005, “
Mechanical Stimulation of MC3T3 Osteoblastic Cells in a Bone Tissue-Engineering Bioreactor Enhances Prostaglandin E2 Release
,”
Tissue Eng.
1076-3279,
11
(
11–12
), pp.
1832
1839
.
4.
Weiss
,
S.
,
Zimmermann
,
G.
,
Baumgart
,
R.
,
Kasten
,
P.
,
Bidlingmaier
,
M.
, and
Henle
,
P.
, 2005, “
Systemic Regulation of Angiogenesis and Matrix Degradation in Bone Regeneration–Distraction Osteogenesis Compared to Rigid Fracture Healing
,”
Bone (N.Y.)
8756-3282,
37
(
6
), pp.
781
790
.
5.
Li
,
G.
,
Simpson
,
A. H.
,
Kenwright
,
J.
, and
Triffitt
,
J. T.
, 1999, “
Effect of Lengthening Rate on Angiogenesis During Distraction Osteogenesis
,”
J. Orthop. Res.
0736-0266,
17
(
3
), pp.
362
367
.
6.
Robling
,
A. G.
,
Castillo
,
A. B.
, and
Turner
,
C. H.
, 2006, “
Biomechanical and Molecular Regulation of Bone Remodeling
,”
Annu. Rev. Biomed. Eng.
1523-9829,
8
, pp.
455
498
.
7.
van der Meulen
,
M. C.
,
Morgan
,
T. G.
,
Yang
,
X.
,
Baldini
,
T. H.
,
Myers
,
E. R.
,
Wright
,
T. M.
, and
Bostrom
,
M. P.
, 2006, “
Cancellous Bone Adaptation to In Vivo Loading in a Rabbit Model
,”
Bone (N.Y.)
8756-3282,
38
(
6
), pp.
871
877
.
8.
Robling
,
A. G.
,
Burr
,
D. B.
, and
Turner
,
C. H.
, 2000, “
Partitioning a Daily Mechanical Stimulus Into Discrete Loading Bouts Improves the Osteogenic Response to Loading
,”
J. Bone Miner. Res.
0884-0431,
15
(
8
), pp.
1596
1602
.
9.
Schriefer
,
J. L.
,
Warden
,
S. J.
,
Saxon
,
L. K.
,
Robling
,
A. G.
, and
Turner
,
C. H.
, 2005, “
Cellular Accommodation and the Response of Bone to Mechanical Loading
,”
J. Biomech.
0021-9290,
38
(
9
), pp.
1838
1845
.
10.
Matsuzaki
,
H.
,
Wohl
,
G. R.
,
Novack
,
D. V.
,
Lynch
,
J. A.
, and
Silva
,
M. J.
, 2007, “
Damaging Fatigue Loading Stimulates Increases in Periosteal Vascularity at Sites of Bone Formation in the Rat Ulna
,”
Calcif. Tissue Int.
0171-967X,
80
(
6
), pp.
391
399
.
11.
Moalli
,
M. R.
,
Caldwell
,
N. J.
,
Patil
,
P. V.
, and
Goldstein
,
S. A.
, 2000, “
An In Vivo Model for Investigations of Mechanical Signal Transduction in Trabecular Bone
,”
J. Bone Miner. Res.
0884-0431,
15
(
7
), pp.
1346
1353
.
12.
Pavlin
,
D.
,
Zadro
,
R.
, and
Gluhak-Heinrich
,
J.
, 2001, “
Temporal Pattern of Stimulation of Osteoblast-Associated Genes During Mechanically-Induced Osteogenesis In Vivo: Early Responses of Osteocalcin and Type I Collagen
,”
Connect. Tissue Res.
0300-8207,
42
(
2
), pp.
135
148
.
13.
Warren
,
S. M.
,
Mehrara
,
B. J.
,
Steinbrech
,
D. S.
,
Paccione
,
M. F.
,
Greenwald
,
J. A.
,
Spector
,
J. A.
, and
Longaker
,
M. T.
, 2001, “
Rat Mandibular Distraction Osteogenesis: Part III. Gradual Distraction Versus Acute Lengthening
,”
Plast. Reconstr. Surg.
0032-1052,
107
(
2
), pp.
441
453
.
14.
Li
,
Y. J.
,
Batra
,
N. N.
,
You
,
L.
,
Meier
,
S. C.
,
Coe
,
I. A.
,
Yellowley
,
C. E.
, and
Jacobs
,
C. R.
, 2004, “
Oscillatory Fluid Flow Affects Human Marrow Stromal Cell Proliferation and Differentiation
,”
J. Orthop. Res.
0736-0266,
22
(
6
), pp.
1283
1289
.
15.
You
,
J.
,
Reilly
,
G. C.
,
Zhen
,
X.
,
Yellowley
,
C. E.
,
Chen
,
Q.
,
Donahue
,
H. J.
, and
Jacobs
,
C. R.
, 2001, “
Osteopontin Gene Regulation by Oscillatory Fluid Flow Via Intracellular Calcium Mobilization and Activation of Mitogen-Activated Protein Kinase in MC3T3-E1 Osteoblasts
,”
J. Biol. Chem.
0021-9258,
276
(
16
), pp.
13365
13371
.
16.
Ponik
,
S. M.
,
Triplett
,
J. W.
, and
Pavalko
,
F. M.
, 2007, “
Osteoblasts and Osteocytes Respond Differently to Oscillatory and Unidirectional Fluid Flow Profiles
,”
J. Cell. Biochem.
0730-2312,
100
(
3
), pp.
794
807
.
17.
Wu
,
C. C.
,
Li
,
Y. S.
,
Haga
,
J. H.
,
Wang
,
N.
,
Lian
,
I. Y.
,
Su
,
F. C.
,
Usami
,
S.
, and
Chien
,
S.
, 2006, “
Roles of MAP Kinases in the Regulation of Bone Matrix Gene Expressions in Human Osteoblasts by Oscillatory Fluid Flow
,”
J. Cell. Biochem.
0730-2312,
98
(
3
), pp.
632
641
.
18.
Batra
,
N. N.
,
Li
,
Y. J.
,
Yellowley
,
C. E.
,
You
,
L.
,
Malone
,
A. M.
,
Kim
,
C. H.
, and
Jacobs
,
C. R.
, 2005, “
Effects of Short-Term Recovery Periods on Fluid-Induced Signaling in Osteoblastic Cells
,”
J. Biomech.
0021-9290,
38
(
9
), pp.
1909
1917
.
19.
Sittichockechaiwut
,
A.
,
Scutt
,
A. M.
,
Ryan
,
A. J.
,
Bonewald
,
L. F.
, and
Reilly
,
G. C.
, 2009, “
Use of Rapidly Mineralising Osteoblasts and Short Periods of Mechanical Loading to Accelerate Matrix Maturation in 3D Scaffolds
,”
Bone (N.Y.)
8756-3282,
44
(
5
), pp.
822
829
.
20.
Thi
,
M. M.
,
Iacobas
,
D. A.
,
Iacobas
,
S.
, and
Spray
,
D. C.
, 2007, “
Fluid Shear Stress Upregulates Vascular Endothelial Growth Factor Gene Expression in Osteoblasts
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1117
, pp.
73
81
.
21.
Singh
,
S. P.
,
Chang
,
E. I.
,
Gossain
,
A. K.
,
Mehara
,
B. J.
,
Galiano
,
R. D.
,
Jensen
,
J.
,
Longaker
,
M. T.
,
Gurtner
,
G. C.
, and
Saadeh
,
P. B.
, 2007, “
Cyclic Mechanical Strain Increases Production of Regulators of Bone Healing in Cultured Murine Osteoblasts
,”
J. Am. Coll. Surg.
1072-7515,
204
(
3
), pp.
426
434
.
22.
Motokawa
,
M.
,
Kaku
,
M.
,
Tohma
,
Y.
,
Kawata
,
T.
,
Fujita
,
T.
,
Kohno
,
S.
,
Tsutsui
,
K.
,
Ohtani
,
J.
,
Tenjo
,
K.
,
Shigekawa
,
M.
,
Kamada
,
H.
, and
Tanne
,
K.
, 2005, “
Effects of Cyclic Tensile Forces on the Expression of Vascular Endothelial Growth Factor (VEGF) and Macrophage-Colony-Stimulating Factor (M-CSF) in Murine Osteoblastic MC3T3-E1 Cells
,”
J. Dent. Res.
0022-0345,
84
(
5
), pp.
422
427
.
23.
Fong
,
K. D.
,
Nacamuli
,
R. P.
,
Loboa
,
E. G.
,
Henderson
,
J. H.
,
Fang
,
T. D.
,
Song
,
H. M.
,
Cowan
,
C. M.
,
Warren
,
S. M.
,
Carter
,
D. R.
, and
Longaker
,
M. T.
, 2003, “
Equibiaxial Tensile Strain Affects Calvarial Osteoblast Biology
,”
J. Craniofac Surg.
1049-2275,
14
(
3
), pp.
348
355
.
24.
Liu
,
H.
,
Lin
,
J.
, and
Roy
,
K.
, 2006, “
Effect of 3D Scaffold and Dynamic Culture Condition on the Global Gene Expression Profile of Mouse Embryonic Stem Cells
,”
Biomaterials
0142-9612,
27
(
36
), pp.
5978
5989
.
25.
Fischbach
,
C.
,
Kong
,
H. J.
,
Hsiong
,
S. X.
,
Evangelista
,
M. B.
,
Yuen
,
W.
, and
Mooney
,
D. J.
, 2009, “
Cancer Cell Angiogenic Capability Is Regulated by 3D Culture and Integrin Engagement
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
106
(
2
), pp.
399
404
.
26.
Byrne
,
E. M.
,
Farrell
,
E.
,
McMahon
,
L. A.
,
Haugh
,
M. G.
,
O'Brien
,
F. J.
,
Campbell
,
V. A.
,
Prendergast
,
P. J.
, and
O'Connell
,
B. C.
, 2008, “
Gene Expression by Marrow Stromal Cells in a Porous Collagen-Glycosaminoglycan Scaffold Is Affected by Pore Size and Mechanical Stimulation
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
19
(
11
), pp.
3455
3463
.
27.
Farrell
,
E.
,
Byrne
,
E. M.
,
Fischer
,
J.
,
O'Brien
,
F. J.
,
O'Connell
,
B. C.
,
Prendergast
,
P. J.
, and
Campbell
,
V. A.
, 2007, “
A Comparison of the Osteogenic Potential of Adult Rat Mesenchymal Stem Cells Cultured in 2-D and on 3-D Collagen Glycosaminoglycan Scaffolds
,”
Technol. Health Care
0928-7329,
15
(
1
), pp.
19
31
.
28.
Hishikawa
,
K.
,
Miura
,
S.
,
Marumo
,
T.
,
Yoshioka
,
H.
,
Mori
,
Y.
,
Takato
,
T.
, and
Fujita
,
T.
, 2004, “
Gene Expression Profile of Human Mesenchymal Stem Cells During Osteogenesis in Three-Dimensional Thermoreversible Gelation Polymer
,”
Biochem. Biophys. Res. Commun.
0006-291X,
317
(
4
), pp.
1103
1107
.
29.
Helmke
,
C.
, 1999, “
Factors Affecting Bone Cell Growth and Differentiation Under Differing Culture Conditions
,” M.A. thesis, Rice University, Houston, TX.
30.
Jarrahy
,
R.
,
Huang
,
W.
,
Rudkin
,
G. H.
,
Lee
,
J. M.
,
Ishida
,
K.
,
Berry
,
M. D.
,
Sukkarieh
,
M.
,
Wu
,
B. M.
,
Yamaguchi
,
D. T.
, and
Miller
,
T. A.
, 2005, “
Osteogenic Differentiation Is Inhibited and Angiogenic Expression Is Enhanced in MC3T3-E1 Cells Cultured on Three-Dimensional Scaffolds
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
289
(
2
), pp.
C408
C414
.
31.
Sikavitsas
,
V. I.
,
Bancroft
,
G. N.
,
Holtorf
,
H. L.
,
Jansen
,
J. A.
, and
Mikos
,
A. G.
, 2003, “
Mineralized Matrix Deposition by Marrow Stromal Osteoblasts in 3D Perfusion Culture Increases With Increasing Fluid Shear Forces
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
25
), pp.
14683
14688
.
32.
Bancroft
,
G. N.
,
Sikavitsas
,
V. I.
,
van den Dolder
,
J.
,
Sheffield
,
T. L.
,
Ambrose
,
C. G.
,
Jansen
,
J. A.
, and
Mikos
,
A. G.
, 2002, “
Fluid Flow Increases Mineralized Matrix Deposition in 3D Perfusion Culture of Marrow Stromal Osteoblasts in a Dose-Dependent Manner
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
20
), pp.
12600
12605
.
33.
Holtorf
,
H. L.
,
Jansen
,
J. A.
, and
Mikos
,
A. G.
, 2005, “
Flow Perfusion Culture Induces the Osteoblastic Differentiation of Marrow Stroma Cell-Scaffold Constructs in the Absence of Dexamethasone
,”
J. Biomed. Mater. Res. Part A
1549-3296,
72
(
3
), pp.
326
334
.
34.
Jaasma
,
M. J.
, and
O’Brien
,
F. J.
, 2008, “
Mechanical Stimulation of Osteoblasts Using Steady and Dynamic Fluid Flow
,”
Tissue Engineering Part A
,
14
(
7
), pp.
1213
1223
.
35.
Cartmell
,
S. H.
,
Porter
,
B. D.
,
Garcia
,
A. J.
, and
Guldberg
,
R. E.
, 2003, “
Effects of Medium Perfusion Rate on Cell-Seeded Three-Dimensional Bone Constructs In Vitro
,”
Tissue Eng.
1076-3279,
9
(
6
), pp.
1197
1203
.
36.
Weinbaum
,
S.
,
Cowin
,
S. C.
, and
Zeng
,
Y.
, 1994, “
A Model for the Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stresses
,”
J. Biomech.
0021-9290,
27
(
3
), pp.
339
360
.
37.
Tanaka
,
S. M.
,
Sun
,
H. B.
,
Roeder
,
R. K.
,
Burr
,
D. B.
,
Turner
,
C. H.
, and
Yokota
,
H.
, 2005, “
Osteoblast Responses One Hour After Load-Induced Fluid Flow in a Three-Dimensional Porous Matrix
,”
Calcif. Tissue Int.
0171-967X,
76
(
4
), pp.
261
271
.
38.
Cowin
,
S. C.
, 2001,
Bone Mechanics Handbook
,
CRC
,
Boca Raton, FL
.
39.
Cornell
,
C. N.
, 1999, “
Osteoconductive Materials and Their Role as Substitutes for Autogenous Bone Grafts
,”
Orthop. Clin. North Am.
0030-5898,
30
(
4
), pp.
591
598
.
40.
Jungreuthmayer
,
C.
,
Donahue
,
S. W.
,
Jaasma
,
M. J.
,
Al-Munajjed
,
A. A.
,
Zanghellini
,
J.
,
Kelly
,
D. J.
, and
O'Brien
,
F. J.
, 2009, “
A Comparative Study of Shear Stresses in Collagen-Glycosaminoglycan and Calcium Phosphate Scaffolds in Bone Tissue-Engineering Bioreactors
,”
Tissue Engineering Part A
,
15
(
5
), pp.
1141
1149
.
41.
Pfaffl
,
M. W.
, 2001, “
A New Mathematical Model for Relative Quantification in Real-Time RT-PCR
,”
Nucleic Acids Res.
0305-1048,
29
(
9
) e45, pp.
2002
2007
.
42.
Mistry
,
A. S.
, and
Mikos
,
A. G.
, 2005, “
Tissue Engineering Strategies for Bone Regeneration
,”
Adv. Biochem. Eng./Biotechnol.
0724-6145,
94
, pp.
1
22
.
43.
Griffith
,
C. K.
,
Miller
,
C.
,
Sainson
,
R. C.
,
Calvert
,
J. W.
,
Jeon
,
N. L.
,
Hughes
,
C. C.
, and
George
,
S. C.
, 2005, “
Diffusion Limits of an In Vitro Thick Prevascularized Tissue
,”
Tissue Eng.
1076-3279,
11
(
1–2
), pp.
257
266
.
44.
Potier
,
E.
,
Ferreira
,
E.
,
Andriamanalijaona
,
R.
,
Pujol
,
J. P.
,
Oudina
,
K.
,
Logeart-Avramoglou
,
D.
, and
Petite
,
H.
, 2007, “
Hypoxia Affects Mesenchymal Stromal Cell Osteogenic Differentiation and Angiogenic Factor Expression
,”
Bone (N.Y.)
8756-3282,
40
(
4
), pp.
1078
1087
.
45.
Ishibashi
,
H.
,
Nakagawa
,
K.
,
Nakashima
,
Y.
, and
Sueishi
,
K.
, 1995, “
Conditioned Media of Carcinoma Cells Cultured in Hypoxic Microenvironment Stimulate Angiogenesis In Vitro; Relationship to Basic Fibroblast Growth Factor
,”
Virchows Arch.
0945-6317,
425
(
6
), pp.
561
568
.
46.
Gross
,
T. S.
,
King
,
K. A.
,
Rabaia
,
N. A.
,
Pathare
,
P.
, and
Srinivasan
,
S.
, 2005, “
Upregulation of Osteopontin by Osteocytes Deprived of Mechanical Loading or Oxygen
,”
J. Bone Miner. Res.
0884-0431,
20
(
2
), pp.
250
256
.
47.
Raheja
,
L. F.
,
Genetos
,
D. C.
, and
Yellowley
,
C. E.
, 2008, “
Hypoxic Osteocytes Recruit Human MSCs Through an OPN/CD44-Mediated Pathway
,”
Biochem. Biophys. Res. Commun.
0006-291X,
366
(
4
), pp.
1061
1066
.
48.
Kroon
,
M. E.
,
Koolwijk
,
P.
,
van der Vecht
,
B.
, and
van Hinsbergh
,
V. W.
, 2001, “
Hypoxia in Combination With FGF-2 Induces Tube Formation by Human Microvascular Endothelial Cells in a Fibrin Matrix: Involvement of at Least Two Signal Transduction Pathways
,”
J. Cell. Sci.
0021-9533,
114
(
Pt 4
), pp.
825
833
.
49.
Li
,
C. F.
, and
Hughes-Fulford
,
M.
, 2006, “
Fibroblast Growth Factor-2 Is an Immediate-Early Gene Induced by Mechanical Stress in Osteogenic Cells
,”
J. Bone Miner. Res.
0884-0431,
21
(
6
), pp.
946
955
.
50.
Cillo
,
J. E.
, Jr.
,
Gassner
,
R.
,
Koepsel
,
R. R.
, and
Buckley
,
M. J.
, 2000, “
Growth Factor and Cytokine Gene Expression in Mechanically Strained Human Osteoblast-Like Cells: Implications for Distraction Osteogenesis
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
1079-2104,
90
(
2
), pp.
147
154
.
51.
Scaglione
,
S.
,
Wendt
,
D.
,
Miggino
,
S.
,
Papadimitropoulos
,
A.
,
Fato
,
M.
,
Quarto
,
R.
, and
Martin
,
I.
, 2008, “
Effects of Fluid Flow and Calcium Phosphate Coating on Human Bone Marrow Stromal Cells Cultured in a Defined 2D Model System
,”
J. Biomed. Mater. Res. Part A
1549-3296,
86
(
2
), pp.
411
419
.
You do not currently have access to this content.