Needle insertion simulation and planning systems (SPSs) will play an important role in diminishing inappropriate insertions into soft tissues and resultant complications. Difficulties in SPS development are due in large part to the computational requirements of the extensive calculations in finite element (FE) models of tissue. For clinical feasibility, the computational speed of SPSs must be improved. At the same time, a realistic model of tissue properties that reflects large and velocity-dependent deformations must be employed. The purpose of this study is to address the aforementioned difficulties by presenting a cost-effective SPS platform for needle insertions into the liver. The study was constrained to planar (2D) cases, but can be extended to 3D insertions. To accommodate large and velocity-dependent deformations, a hyperviscoelastic model was devised to produce an FE model of liver tissue. Material constants were identified by a genetic algorithm applied to the experimental results of unconfined compressions of bovine liver. The approach for SPS involves B-spline interpolations of sample data generated from the FE model of liver. Two interpolation-based models are introduced to approximate puncture times and to approximate the coordinates of FE model nodes interacting with the needle tip as a function of the needle initiation pose; the latter was also a function of postpuncture time. A real-time simulation framework is provided, and its computational benefit is highlighted by comparing its performance with the FE method. A planning algorithm for optimal needle initiation was designed, and its effectiveness was evaluated by analyzing its accuracy in reaching a random set of targets at different resolutions of sampled data using the FE model. The proposed simulation framework can easily surpass haptic rates (>500Hz), even with a high pose resolution level (30). The computational time required to update the coordinates of the node at the needle tip in the provided example was reduced from 177 s to 0.8069 ms. The planning accuracy was acceptable even with moderate resolution levels: root-mean-square and maximum errors were 1 mm and 1.2 mm, respectively, for a pose and PPT resolution levels of 17 and 20, respectively. The proposed interpolation-based models significantly improve the computational speed of needle insertion simulation and planning, based on the discretized (FE) model of the liver and can be utilized to establish a cost-effective planning platform. This modeling approach can also be extended for use in other surgical simulations.

1.
Azar
,
F. S.
,
Metaxas
,
D. N.
, and
Schnall
,
M. D.
, 2001, “
A Deformable Finite Element Model of the Breast for Predicting Mechanical Deformations Under External Perturbations
,”
Acad. Radiol.
1076-6332,
8
(
10
), pp.
965
975
.
2.
Nath
,
S.
,
Chen
,
Z.
,
Yue
,
N.
,
Trumpore
,
S.
, and
Peschel
,
R.
, 2000, “
Dosimetric Effects of Needle Divergence in Prostate Seed Implant Using 125I and 103Pd Radioactive Seeds
,”
Med. Phys.
0094-2405,
27
(
5
), pp.
1058
1066
.
3.
De Andrés
,
J.
, and
Sala-Blanch
,
X.
, 2001, “
Peripheral Nerve Stimulation in the Practice of Brachial Plexus Anesthesia: A Review
,”
Reg. Anesth. Pain Med.
,
26
(
5
), pp.
478
483
.
4.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
, 2003, “
Needle Insertion Modelling and Simulation
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
5
), pp.
864
875
.
5.
Schmidlin
,
F. R.
,
Schmid
,
P.
,
Kurtyka
,
T.
,
Iselin
,
C. E.
, and
Graber
,
P.
, 1996, “
Force Transmission and Stress Distribution in a Computer Simulated Model of the Kidney: An Analysis of the Injury Mechanisms in Renal Trauma
,”
J. Trauma
0022-5282,
40
(
5
), pp.
791
796
.
6.
Alterovitz
,
R.
,
Pouliot
,
J.
,
Taschereau
,
R.
,
Hsu
,
I. -C. J.
, and
Goldberg
,
K.
, 2003, “
Simulating Needle Insertion and Radioactive Seed Implantation for Prostate Brachytherapy
,”
Studies in Health Technology and Informatics—Medicine Meets Virtual Reality
,
J. D.
Westwood
,
H. M.
Hoffman
,
G. T.
Mogel
,
R.
Phillips
,
R. A.
Robb
, and
D.
Stredney
, eds.,
IOS Press
,
Amsterdam
, Vol.
94
, pp.
19
25
.
7.
Goksel
,
O.
,
Salcudean
,
S. E.
, and
DiMaio
,
S. P.
, 2006, “
3D Simulation of Needle-Tissue Interaction With Application to Prostate Brachytherapy
,”
Comput. Aided Surg.
1092-9088,
11
(
6
), pp.
279
288
.
8.
Dehghan
,
E.
, and
Salcudean
,
S. E.
, 2009, “
Needle Insertion Parameter Optimization for Brachytherapy
,”
IEEE Trans. Rob. Autom.
1042-296X,
25
(
2
), pp.
303
315
.
9.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
, 2005, “
Interactive Simulation of Needle Insertion Models
,”
IEEE Trans. Biomed. Eng.
0018-9294,
52
(
7
), pp.
1167
1179
.
10.
Alterovitz
,
R.
,
Goldberg
,
K.
,
Pouliot
,
J.
,
Taschereau
,
R.
, and
Hsu
,
I. -C. J.
, 2003, “
Sensorless Planning for Medical Needle Insertion Procedures
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robot Systems
, Las Vegas, NV, pp.
3337
3343
.
11.
Alterovitz
,
R.
,
Goldberg
,
K.
, and
Okamura
,
A.
, 2005, “
Planning for Steerable Bevel-Tip Needle Insertion Through 2D Soft Tissue With Obstacles
,”
Proceedings of the IEEE International Conference on Robotics Automation
, Barcelona, Spain, pp.
1640
1645
.
12.
Delingette
,
H.
, 1998, “
Towards Realistic Soft Tissue Modeling in Medical Simulation
,”
Proc. IEEE
0018-9219,
86
(
3
), pp.
512
523
.
13.
Glozman
,
D.
, and
Shoham
,
M.
, 2007, “
Image-Guided Robotic Flexible Needle Steering
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
(
3
), pp.
459
467
.
14.
Kerdok
,
A. E.
,
Cotin
,
S. M.
,
Ottensmeyer
,
M. P.
,
Galea
,
A. M.
,
Howe
,
R. D.
, and
Dawson
,
S. L.
, 2003, “
Truth Cube: Establishing Physical Standards for Soft Tissue Simulation
,”
Med. Image Anal.
1361-8415,
7
(
3
), pp.
283
291
.
15.
Carter
,
F. J.
,
Frank
,
T. G.
,
Davies
,
P. J.
,
McLean
,
D.
, and
Cuschieri
,
A.
, 2001, “
Measurements and Modelling of the Compliance of Human and Porcine Organs
,”
Med. Image Anal.
1361-8415,
5
(
4
), pp.
231
236
.
16.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
, 2004, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
51
(
10
), pp.
1707
1716
.
17.
Wittek
,
A.
,
Dutta-Roy
,
T.
,
Taylor
,
Z.
,
Horton
,
A.
,
Washio
,
T.
,
Chinzei
,
K.
, and
Miller
,
K.
, 2008, “
Subject-Specific Non-Linear Biomechanics Model of Needle Insertion Into Brain
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
11
(
2
), pp.
135
146
.
18.
Hing
,
J. T.
,
Brooks
,
A. D.
, and
Desai
,
J. P.
, 2007, “
A Biplanar Fluoroscopic Approach for the Measurement, Modeling, and Simulation of Needle and Soft Tissue Interaction
,”
Med. Image Anal.
1361-8415,
11
(
1
), pp.
62
78
.
19.
Miller
,
K.
, 1999, “
Constitutive Model of Brain Tissue Suitable for Finite Element Analysis of Surgical Procedures
,”
J. Biomech.
0021-9290,
32
(
5
), pp.
531
537
.
20.
Taylor
,
Z.
, and
Miller
,
K.
, 2004, “
Reassessment of Brain Elasticity for Analysis of Biomechanisms of Hydrocephalus
,”
J. Biomech.
0021-9290,
37
(
8
), pp.
1263
1269
.
21.
Miller
,
K.
, 2000, “
Constitutive Modeling of Abdominal Organs
,”
J. Biomech.
0021-9290,
33
(
3
), pp.
367
373
.
22.
Sharifi Sedeh
,
R.
, 2005, “
Online Control of Needle Injection in Haptic Devices Into Soft Tissue Using Finite Element Method
,” MS thesis, Sharifi University of Technology, Tehran, Iran.
23.
Picinbono
,
G.
,
Delingette
,
H.
, and
Ayache
,
N.
, 2003, “
Non-Linear Anisotropic Elasticity for Real Time Surgery Simulation
,”
Graphical Models
1524-0703,
65
(
5
), pp.
305
321
.
24.
Schwartz
,
J. M.
,
Denninger
,
M.
,
Rancourt
,
D.
,
Moisan
,
C.
, and
Laurendeau
,
D.
, 2005, “
Modelling Liver Tissue Properties Using a Non-Linear Visco-Elastic Model for Surgery Simulation
,”
Med. Image Anal.
1361-8415,
9
(
2
), pp.
103
112
.
25.
Miller
,
K.
, and
Chinzei
,
K.
, 1997, “
Constitutive Modeling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
0021-9290,
30
(
11-12
), pp.
1115
1121
.
26.
Sakuma
,
I.
,
Nishimura
,
Y.
,
Chui
,
C. K.
,
Kobayashi
,
E.
,
Inada
,
H.
,
Chen
,
X.
, and
Hisada
,
T.
, 2003, “
Vitro Measurement of Mechanical Properties of Liver Tissue Under Compression and Elongation Using a New Test Piece Holding Method With Surgical Glue
,”
Lecture Notes in Comp. Sci.: Surgery Simulation and Soft Tissue Modeling
,
N.
Ayache
and
H.
Delingette
, eds.,
Springer-Verlag
,
Berlin
, Vol.
2673
, pp.
284
292
.
27.
Halloran
,
J. P.
,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
, 2009, “
Adaptive Surrogate Modeling for Efficient Coupling of Musculoskeletal Control and Tissue Deformation Models
,”
J. Biomech. Eng.
0148-0731,
131
(
1
), p.
011014
.
28.
Lin
,
Y. C.
,
Haftka
,
R. T.
,
Queipo
,
N. V.
, and
Fregly
,
B. J.
, 2009, “
Two-Dimensional Surrogate Contact Modeling for Computationally Efficient Dynamic Simulation of Total Knee Replacements
,”
J. Biomech. Eng.
0148-0731,
131
(
4
), p.
041010
.
29.
1994,
ABAQUS Users Manual, version 5.4
,
Hibbit, Karlsson & Sorensen, Inc.
,
Pawtucket, Rhode Island
.
30.
Carter
,
F.
,
Russell
,
E.
,
Dunkley
,
P.
, and
Cuschieri
,
A.
, 1994, “
Restructured Animal Tissue Model for Training in Laparoscopic Anti-Reflux Surgery
,”
Minimally Invasive Ther. Allied Technol.
1364-5706,
3
(
2
), pp.
77
80
.
31.
Man
,
K. F.
,
Tang
,
K. S.
, and
Kwong
,
S.
, 1999,
Genetic Algorithms
,
Springer
,
London, England
.
32.
Baldewsing
,
R. A.
,
de Korte
,
C. L.
,
Schaar
,
J. A.
,
Mastik
,
F.
, and
van der Steen
,
A. F. W.
, 2004, “
Finite Element Modeling and Intravascular Ultrasound Elastography of Vulnerable Plaques: Parameter Variation
,”
Ultrasonics
0041-624X,
42
(
1–9
), pp.
723
729
.
33.
Moulton
,
M.
,
Creswell
,
L.
,
Downing
,
S.
,
Actis
,
R.
,
Szabo
,
B.
,
Vannier
,
M.
, and
Pasque
,
M.
, 1996, “
Spline Surface Interpolation for Calculating 3-D Ventricular Strains From MRI Tissue Tagging
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
270
(
1
), pp.
H281
H297
.
34.
Sussman
,
T.
, and
Bathe
,
K. -J.
, 2009, “
A Model of Incompressible Isotropic Hyperelastic Material Behavior Using Spline Interpolations of Tension-Compression Test Data
,”
Commun. Numer. Methods Eng.
1069-8299,
25
(
1
), pp.
53
63
.
35.
de Boor
,
C.
, 1987,
A Practical Guide to Splines
,
Springer-Verlag
,
New York
.
36.
Ma
,
W.
, and
Kruth
,
J. P.
, 1995, “
Parameterization of Randomly Measured Points for Least Squares Fitting of B-Spline Curves and Surfaces
,”
Comput. Aided Des.
,
27
(
9
), pp.
663
675
.
37.
Cheng
,
F.
, and
Goshtasby
,
A.
, 1988, “
A Parallel B-Spline Surface Fitting Algorithm
,”
ACM Trans. Graphics
0730-0301,
8
(
1
), pp.
41
50
.
38.
Canny
,
J.
,
Rege
,
A.
, and
Reif
,
J.
, 1991, “
An Exact Algorithm for Kinodynamic Planning in the Plane
,”
Discrete Comput. Geom.
0179-5376,
6
(
1
), pp.
461
484
.
39.
LaValle
,
S. M.
, 2006,
Planning Algorithms
,
Cambridge University Press
,
New York
.
40.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
, 1993,
Nonlinear Programming: Theory and Algorithms
,
2nd ed.
,
Wiley
,
New York
.
41.
Kuvshinoff
,
B. W.
, and
Ota
,
D. M.
, 2002, “
Radiofrequency Ablation of Liver Tumors: Influence of Technique and Tumor Size. Discussion
,”
Proceedings of the Annual Meeting Central Surgical Association
, Pittsburgh, PA, Vol.
132
(
4
), pp.
605
612
.
42.
Bro-Nielsen
,
M.
, and
Cotin
,
S.
, 1996, “
Real-Time Volumetric Deformable Models for Surgery Simulation Using Finite Element and Condensation
,”
Comput. Graph. Forum
1067-7055,
15
(
3
), pp.
57
66
.
43.
Han
,
L.
,
Noble
,
J. A.
, and
Burcher
,
M.
, 2003, “
A Novel Ultrasound Identification System for Measuring Biomechanical Properties of In Vivo Soft Tissue
,”
Ultrasound Med. Biol.
0301-5629,
29
(
6
), pp.
813
823
.
44.
Sinkus
,
R.
,
Tanter
,
M.
,
Xydeas
,
T.
,
Catheline
,
S.
,
Bercoff
,
J.
, and
Fink
,
M.
, 2005, “
Viscoelastic Shear Properties of In Vivo Breast Lesions Measured by MR Elastography
,”
Magn. Reson. Imaging
0730-725X,
23
(
2
), pp.
159
165
.
45.
Kauer
,
M.
,
Vuskovic
,
V.
,
Dual
,
J.
,
Szekley
,
G.
, and
Bajka
,
M.
, 2002, “
Inverse Finite Element Characterization of Soft Tissues
,”
Med. Image Anal.
1361-8415,
6
(
3
), pp.
275
287
.
You do not currently have access to this content.