The comparison, evaluation, and optimization of new techniques, models, or algorithms often require the use of realistic deformable test phantoms. The purpose of this paper is to present a multilayer deformable test specimen mimicking an atherosclerotic coronary artery, suitable for mechanical testing and intravascular imaging. Mock arteries were constructed in three phases using two molds: building a first layer of polyvinyl alcohol (PVA) cryogel, adding a lipid pool and building a second layer of PVA cryogel. To illustrate the deformation of the mock arteries, one has been placed in a custom-made bath, axially stretched then inflated while acquiring intravascular ultrasound (IVUS) images. The resulting specimen presents a progressing lumen narrowing of 25% in cross-sectional area at the peak and a lipid pool. The average inner gel layer is about 0.4 mm thick and the outer about 0.6 mm. The dimensions are of the same order as clinical observations, the first gel layer mimicking the intima-media and the second layer the adventitia. In the sequence of IVUS images, the different components of the mock artery are visible and differentiable. The variation in diameter of the segmented contours is presented for a specific specimen subjected to intraluminal pressure. This double-layer stenotic mock artery is approximately the size of a human coronary artery, has a lipid inclusion, can withstand relative large deformation, suitable for (intravascular) ultrasound imaging, and has customizable geometry and wall material parameters.

1.
Mintz
,
G. S.
,
Nissen
,
S. E.
,
Anderson
,
W. D.
,
Bailey
,
S. R.
,
Erbel
,
R.
,
Fitzgerald
,
P. J.
,
Pinto
,
F. J.
,
Rosenfield
,
K.
,
Siegel
,
R. J.
,
Tuzcu
,
E. M.
, and
Yock
,
P. G.
, 2001, “
American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents
,”
J. Am. Coll. Cardiol.
0735-1097,
37
(
5
), pp.
1478
1492
.
2.
Baldewsing
,
R. A.
,
De Korte
,
C. L.
,
Schaar
,
J. A.
,
Mastik
,
F.
, and
Van Der Steen
,
A. F.
, 2004, “
A Finite Element Model for Performing Intravascular Ultrasound Elastography of Human Atherosclerotic Coronary Arteries
,”
Ultrasound Med. Biol.
0301-5629,
30
(
6
), pp.
803
813
.
3.
de Korte
,
C. L.
,
Céspedes
,
E. I.
,
van der Steen
,
A. F. W.
, and
Lancée
,
C. T.
, 1997, “
Intravascular Elasticity Imaging Using Ultrasound: Feasibility Studies in Phantoms
,”
Ultrasound Med. Biol.
0301-5629,
23
(
5
), pp.
735
746
.
4.
Nadkarni
,
S. K.
,
Austin
,
H.
,
Mills
,
G.
,
Boughner
,
D.
, and
Fenster
,
A.
, 2003, “
A Pulsating Coronary Vessel Phantom for Two- and Three-Dimensional Intravascular Ultrasound Studies
,”
Ultrasound Med. Biol.
0301-5629,
29
(
4
), pp.
621
628
.
5.
Kobayashi
,
S.
,
Tsunoda
,
D.
,
Fukuzawa
,
Y.
,
Morikawa
,
H.
,
Tang
,
D.
, and
Ku
,
D. N.
, 2003, “
Flow and Compression in Arterial Models of Stenosis With Lipid Core
,”
Proceedings of the Summer Bioengineering Conference
, Florida.
6.
Zell
,
K.
,
Sperl
,
J. I.
,
Vogel
,
M. W.
,
Niessner
,
R.
, and
Haisch
,
C.
, 2007, “
Acoustical Properties of Selected Tissue Phantom Materials for Ultrasound Imaging
,”
Phys. Med. Biol.
0031-9155,
52
(
20
), pp.
N475
484
.
7.
Nadkarni
,
S. K.
,
Mills
,
G.
,
Boughner
,
D. R.
, and
Fenster
,
A.
, 2001, “
A Pulsating Coronary Vessel Phantom for Two- and Three-Dimensional Intravascular Ultrasound Studies
,”
Lect. Notes Comput. Sci.
0302-9743,
2208
, pp.
1164
1165
.
8.
Ferencik
,
M.
,
Chan
,
R. C.
,
Achenbach
,
S.
,
Lisauskas
,
J. B.
,
Houser
,
S. L.
,
Hoffmann
,
U.
,
Abbara
,
S.
,
Cury
,
R. C.
,
Bouma
,
B. E.
,
Tearney
,
G. J.
, and
Brady
,
T. J.
, 2006, “
Arterial Wall Imaging: Evaluation With 16-Section Multidetector CT in Blood Vessel Phantoms and Ex-Vivo Coronary Arteries
,”
Radiology
0033-8419,
240
(
3
), pp.
708
716
.
9.
Surry
,
K. J. M.
,
Austin
,
H. J. B.
,
Fenster
,
A.
, and
Peters
,
T. M.
, 2004, “
Poly(Vinyl Alcohol) Cryogel Phantoms for Use in Ultrasound and MR Imaging
,”
Phys. Med. Biol.
0031-9155,
49
(
24
), pp.
5529
5546
.
10.
Takano
,
M.
,
Mizuno
,
K.
,
Okamatsu
,
K.
,
Yokoyama
,
S.
,
Ohba
,
T.
, and
Sakai
,
S.
, 2001, “
Mechanical and Structural Characteristics of Vulnerable Plaques: Analysis by Coronary Angioscopy and Intravascular Ultrasound
,”
J. Am. Coll. Cardiol.
0735-1097,
38
(
1
), pp.
99
104
.
11.
Pazos
V.
,
Mongrain
,
R.
, and
Tardif
,
J. C.
, 2009, “
Polyvinyl Alcohol Cryogel: Optimizing the Parameters of Cryogenic Treatment Using Hyperelastic Models
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
2
(
5
), pp.
542
549
.
12.
Stammen
,
J. A.
,
Williams
,
S.
,
Ku
,
D. N.
, and
Guldberg
,
R. E.
, 2001, “
Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression
,”
Biomaterials
0142-9612,
22
(
8
), pp.
799
806
.
13.
Święszkowski
,
W.
,
Ku
,
D. N.
,
Bersee
,
H. E. N.
, and
Kurzydlowski
,
K. J.
, 2006, “
An Elastic Material for Cartilage Replacement in an Arthritic Shoulder Joint
,”
Biomaterials
0142-9612,
27
(
8
), pp.
1534
1541
.
14.
Pan
,
Y. -S.
,
Xiong
,
D. -S.
, and
Ma
,
R. -Y.
, 2007, “
A Study on the Friction Properties of Poly(Vinyl Alcohol) Hydrogel as Articular Cartilage Against Titanium Alloy
,”
Wear
0043-1648,
262
(
7–8
), pp.
1021
1025
.
15.
Kobayashi
,
M.
,
Chang
,
Y. S.
, and
Oka
,
M.
, 2005, “
A Two Year in Vivo Study of Polyvinyl Alcohol-Hydrogel (PVA-H) Artificial Meniscus
,”
Biomaterials
0142-9612,
26
(
16
), pp.
3243
3248
.
16.
Allen
,
M. J.
,
Schoonmaker
,
J. E.
,
Bauer
,
T. W.
,
Williams
,
P. F.
,
Higham
,
P. A.
, and
Yuan
,
H. A.
, 2004, “
Preclinical Evaluation of a Poly (Vinyl Alcohol) Hydrogel Implant as a Replacement for the Nucleus Pulposus
,”
Spine
0362-2436,
29
(
5
), pp.
515
523
.
17.
Joshi
,
A.
,
Fussell
,
G.
,
Thomas
,
J.
,
Hsuan
,
A.
,
Lowman
,
A.
,
Karduna
,
A.
,
Vresilovic
,
E.
, and
Marcolongo
,
M.
, 2006, “
Functional Compressive Mechanics of a PVA/PVP Nucleus Pulposus Replacement
,”
Biomaterials
0142-9612,
27
(
2
), pp.
176
184
.
18.
Jiang
,
H.
,
Campbell
,
G.
,
Boughner
,
D.
,
Wan
,
W. -K.
, and
Quantz
,
M.
, 2004, “
Design and Manufacture of a Polyvinyl Alcohol (PVA) Cryogel Tri-Leaflet Heart Valve Prosthesis
,”
Med. Eng. Phys.
1350-4533,
26
(
4
), pp.
269
277
.
19.
Chu
,
K. C.
, and
Rutt
,
B. K.
, 1997, “
Polyvinyl Alcohol Cryogel: An Ideal Phantom Material for MR Studies of Arterial Flow and Elasticity
,”
Magn. Reson. Med.
0740-3194,
37
(
2
), pp.
314
319
.
20.
Prewitt
,
J. M. S.
, 1970,
Picture Processing and Psychopictorics
,
Academic Press
,
Orlando
.
21.
Limaiem
,
A.
, and
Elmaraghy
,
H. A.
, 1999, “
Curve and Surface Modeling With Uncertainties Using Dual Kriging
,”
J. Mech. Des.
1050-0472,
121
(
2
), pp.
249
255
.
You do not currently have access to this content.