Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.

1.
Mow
,
V. C.
, and
Lai
,
W. M.
, 1980, “
Recent Developments in Synovial Joint Biomechanics
,”
SIAM Rev.
0036-1445,
22
(
3
), pp.
275
317
.
2.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
, 1994, “
Cartilage Stresses in the Human Hip-Joint
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
10
18
.
3.
Persson
,
B. N. J.
, 2000,
Sliding Friction
,
Springer-Verlag
,
Berlin
, p.
515
.
4.
Crowninshield
,
R. D.
,
Johnston
,
R. C.
,
Andrews
,
J. G.
, and
Brand
,
R. A.
, 1978, “
A Biomechanical Investigation of the Human Hip
,”
J. Biomech.
0021-9290,
11
(
1–2
), pp.
75
85
.
5.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
(
8
), pp.
969
990
.
6.
Mow
,
V. C.
, 1969, “
Role of Lubrication in Biomechanical Joints
,”
ASME J. Lubr. Technol.
0022-2305,
91
(
2
), pp.
320
328
.
7.
Hodge
,
W. A.
,
Fijan
,
R. S.
,
Carlson
,
K. L.
,
Burgess
,
R. G.
,
Harris
,
W. H.
, and
Mann
,
R. W.
, 1986, “
Contact Pressures in the Human Hip Joint Measured In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
83
(
9
), pp.
2879
2883
.
8.
Hodge
,
W.
,
Carlson
,
K.
,
Fijan
,
R.
,
Burgess
,
R.
,
Riley
,
P.
,
Harris
,
W.
, and
Mann
,
R.
, 1989, “
Contact Pressures From an Instrumented Hip Endoprosthesis
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
71
(
9
), pp.
1378
1386
.
9.
Ateshian
,
G. A.
, and
Wang
,
H.
, 1997, “
Rolling Resistance of Articular Cartilage Due to Interstitial Fluid Flow
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
, pp.
419
424
.
10.
Ateshian
,
G. A.
,
Wang
,
H. Q.
, and
Lai
,
W. M.
, 1998, “
The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage
,”
ASME J. Tribol.
0742-4787,
120
(
2
), pp.
241
248
.
11.
Krishnan
,
R.
,
Mariner
,
E. N.
, and
Ateshian
,
G. A.
, 2005, “
Effect of Dynamic Loading on the Frictional Response of Bovine Articular Cartilage
,”
J. Biomech.
0021-9290,
38
, pp.
1665
1673
.
12.
Forster
,
H.
,
Fisher
,
J.
,
Dowson
,
D.
, and
Wright
,
V.
, 1995, “
The Effect of Stationary Loading on the Friction and Boundary Lubrication of Articular Cartilage in the Mixed Lubrication Regime
,”
Proceedings of the 21st Leeds/Lyon Symposium on Tribology, Lubrication and Lubricants
, Vol.
30
,
D.
Dowson
,
C. M.
Taylor
,
T. H. C.
Childs
, and
G.
Dalmaz
, eds., Leeds, pp.
71
84
.
13.
Chiravarambath
,
S.
,
Simha
,
N. K.
,
Namani
,
R.
, and
Lewis
,
J. L.
, 2009, “
Poroviscoelastic Cartilage Properties in the Mouse From Indentation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
1
), p.
011004
.
14.
Cao
,
L.
,
Youn
,
I.
,
Guilak
,
F.
, and
Setton
,
L. A.
, 2006, “
Compressive Properties of Mouse Articular Cartilage Determined in a Novel Micro-Indentation Test Method and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
766
771
.
15.
Hale
,
J. E.
,
James Rudert
,
M.
, and
Brown
,
T. D.
, 1993, “
Indentation Assessment of Biphasic Mechanical Property Deficits in Size-Dependent Osteochondral Defect Repair
,”
J. Biomech.
0021-9290,
26
(
11
), pp.
1319
1325
.
16.
Donzelli
,
P. S.
, and
Spilker
,
R. L.
, 1998, “
A Contact Finite Element Formulation for Biological Soft Hydrated Tissues
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
153
, pp.
63
79
.
17.
Yang
,
T.
, and
Spilker
,
R. L.
, 2007, “
A Lagrange Multiplier Mixed Finite Element Formulation for Three-Dimensional Contact of Biphasic Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
457
471
.
18.
Warner
,
M. D.
,
Taylor
,
W. R.
, and
Clift
,
S. E.
, 2001, “
A Method for Determining Contact Between a Non-Porous Surface and Articular Cartilage in a Biphasic Fe Model
,”
Computer Methods in Biomechanics and Biomedical Engineering – 3
,
J.
Middleton
,
N. G.
Shrive
, and
G. N.
Pande
, eds., Lisbon, Portugal, pp.
207
212
.
19.
Warner
,
M. D.
, 2000, “
Finite Element Biphasic Modelling of Articular Cartilage: An Investigation Into Crystal Induced Damage
,” Ph.D. thesis, University of Bath, Bath, UK, p.
177
.
20.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary-Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
1
), pp.
78
87
.
21.
Federico
,
S.
,
La Rosa
,
G.
,
Herzog
,
W.
, and
Wu
,
J. Z.
, 2004, “
Effect of Fluid Boundary Conditions on Joint Contact Mechanics and Applications to the Modeling of Osteoarthritic Joints
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
220
225
;
Federico
,
S.
,
La Rosa
,
G.
,
Herzog
,
W.
, and
Wu
,
J. Z.
,
ASME J. Biomech. Eng.
0148-0731, 2005, Erratum in
127
(
1
), pp.
208
209
.
22.
Dassault Systemes
, 2007, “
ABAQUS, Version 6.7-1
,”
Manuals
,
Dassault Systemes
,
Suresnes Cedex, France
.
23.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1992, “
A Finite-Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular-Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
2
), pp.
191
201
.
24.
Goldsmith
,
A. A. J.
,
Hayes
,
A.
, and
Clift
,
S. E.
, 1995, “
Modelling the Response of Biomaterials and Soft, Hydrated Biological Tissues Using Soils Consolidation Theory
,”
ABAQUS User’s Conference
, Paris, France, pp.
305
319
.
25.
Holmes
,
M. H.
, 1986, “
Finite Deformation of Soft-Tissue-Analysis of a Mixture Model in Uniaxial Compression
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
4
), pp.
372
381
.
26.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2000, “
Finite Element Simulation of Location- and Time-Dependent Mechanical Behavior of Chondrocytes in Unconfined Compression Tests
,”
Ann. Biomed. Eng.
0090-6964,
28
(
3
), pp.
318
330
.
27.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
, 1994, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
0021-9290,
27
(
11
), pp.
1347
1360
.
You do not currently have access to this content.