The aim of this work was the design and evaluation of a computational model to predict the functional behavior of the lower leg and foot/ankle complex whereby joint behavior was dictated by three-dimensional articular contact, ligamentous constraints, muscle loading, and external perturbation. Three-dimensional bony anatomy was generated from stacked CT images after which ligament mimicking elements were attached and muscle/body loading added to recreate the experimental conditions of selected cadaveric studies. Comparisons of model predictions to results from two different experimental studies were performed for the function of the medial arch in weight bearing stance and the contributions of soft tissue structures to arch stability. Sensitivity simulations evaluated selected in situ strain and stiffness values for ligament tissue. The greatest contributor to arch stability was the plantar fascia, which provided 79.5% of the resistance to arch collapse, followed by the plantar ligaments (12.5%), and finally the spring ligament (8.0%). Strains measured after plantar fasciotomy increased in the remaining plantar ligament by 300% and spring ligament by 200%. Sensitivity tests varying both in situ strain and stiffness across reported standard deviations showed that functional trends remained the same and true to experimental data, although absolute magnitudes changed. While not measured experimentally, the model also predicted that load can increase dramatically in the remaining plantar tissues when one of such tissues is removed. Overall, computational predictions of stability and soft tissue load sharing compared well with experimental findings. The strength of this simulation approach lies in its capacity to predict biomechanical behavior of modeled structures and to capture physical parameters of interest not measurable in experimental simulations or in vivo.

1.
Cailliet
,
R.
, and
Cailliet
,
R.
, 1983,
Foot and Ankle Pain
,
2nd ed.
,
Davis
,
Philadelphia
.
2.
Hicks
,
J. H.
, 1954, “
The Mechanics of the Foot. II. The Plantar Aponeurosis and the Arch
,”
J. Anat.
0021-8782,
88
(
1
), pp.
25
30
.
3.
Kim
,
W.
, and
Voloshin
,
A. S.
, 1995, “
Role of Plantar Fascia in the Load Bearing Capacity of the Human Foot
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1025
1033
.
4.
Wright
,
D. G.
, and
Rennels
,
D. C.
, 1964, “
A Study of the Elastic Properties of Plantar Fascia
,”
J. Bone Jt. Surg.
0021-9355,
46A
, pp.
482
492
.
5.
Badlissi
,
F.
,
Dunn
,
J. E.
,
Link
,
C. L.
,
Keysor
,
J. J.
,
McKinlay
,
J. B.
, and
Felson
,
D. T.
, 2005, “
Foot Musculoskeletal Disorders, Pain, and Foot-Related Functional Limitation in Older Persons
,”
J. Am. Geriatr. Soc.
0002-8614,
53
(
6
), pp.
1029
1033
.
6.
Barrett
,
S. J.
, and
O’Malley
,
R.
, 1999, “
Plantar Fasciitis and Other Causes of Heel Pain
,”
Am. Fam. Physician
0002-838X,
59
(
8
), pp.
2200
2206
.
7.
Graves
,
R. H.
,
Levin
,
D. R.
,
Giacopelli
,
J.
,
White
,
P. R.
, and
Russel
,
R. D.
, 1994, “
Fluoroscopy-Assisted Plantar Fasciotomy and Calcaneal Exostectomy: A Retrospective Study and Comparison of Surgical Techniques
,”
J. Foot Ankle Surg.
1067-2516,
33
(
5
), pp.
475
481
.
8.
Mosier
,
S. M.
,
Pomeroy
,
G.
, and
Manoli
,
A.
, 1999, “
Pathoanatomy and Etiology of Posterior Tibial Tendon Dysfunction
,”
Clin. Orthop. Relat. Res.
0009-921X,
365
, pp.
12
22
.
9.
Wolgin
,
M.
,
Cook
,
C.
,
Graham
,
C.
, and
Mauldin
,
D.
, 1994, “
Conservative Treatment of Plantar Heel Pain: Long-Term Follow-Up
,”
Foot Ankle Int.
1071-1007,
15
(
3
), pp.
97
102
.
10.
Choi
,
K.
,
Lee
,
S.
,
Otis
,
J. C.
, and
Deland
,
J. T.
, 2003, “
Anatomical Reconstruction of the Spring Ligament Using Peroneus Longus Tendon Graft
,”
Foot Ankle Int.
1071-1007,
24
(
5
), pp.
430
436
.
11.
Crary
,
J. L.
,
Hollis
,
J. M.
, and
Manoli
,
A.
, 2003, “
The Effect of Plantar Fascia Release on Strain in the Spring and Long Plantar Ligaments
,”
Foot Ankle Int.
1071-1007,
24
(
3
), pp.
245
250
.
12.
Deland
,
J. T.
,
Arnoczky
,
S. P.
, and
Thompson
,
F. M.
, 1992, “
Adult Acquired Flatfoot Deformity at the Talonavicular Joint: Reconstruction of the Spring Ligament in an In Vitro Model
,”
Foot Ankle
0198-0211,
13
(
6
), pp.
327
332
.
13.
Horton
,
G. A.
,
Myerson
,
M. S.
,
Parks
,
B. G.
, and
Park
,
Y. W.
, 1998, “
Effect of Calcaneal Osteotomy and Lateral Column Lengthening on the Plantar Fascia: A Biomechanical Investigation
,”
Foot Ankle Int.
1071-1007,
19
(
6
), pp.
370
373
.
14.
Huang
,
C. K.
,
Kitaoka
,
H. B.
,
An
,
K. N.
, and
Chao
,
E. Y.
, 1993, “
Biomechanical Evaluation of Longitudinal Arch Stability
,”
Foot Ankle
0198-0211,
14
(
6
), pp.
353
357
.
15.
Jennings
,
M. M.
, and
Christensen
,
J. C.
, 2008, “
The Effects of Sectioning the Spring Ligament on Rearfoot Stability and Posterior Tibial Tendon Efficiency
,”
J. Foot Ankle Surg.
1067-2516,
47
(
3
), pp.
219
224
.
16.
Jerosch
,
J.
,
Schnuck
,
J.
,
Liebsch
,
D.
, and
Filler
,
T.
, 1997, “
Indication, Surgical Technique and Results of Endoscopic Fascial Release in Plantar Fasciitis (EFRPF)
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
12
(
5
), pp.
471
477
.
17.
Kitaoka
,
H. B.
,
Luo
,
Z. P.
, and
An
,
K. N.
, 1997, “
Effect of Plantar Fasciotomy on Stability of Arch of Foot
,”
Clin. Orthop. Relat. Res.
0009-921X,
344
, pp.
307
312
.
18.
Liacouras
,
P. C.
, and
Wayne
,
J. S.
, 2007, “
Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
6
), pp.
811
817
.
19.
Fisk
,
J. P.
, and
Wayne
,
J. S.
, 2009, “
Development and Validation of a Computational Musculoskeletal Model of the Elbow and Forearm
,”
Ann. Biomed. Eng.
0090-6964,
37
(
4
), pp.
803
812
.
20.
Kitaoka
,
H. B.
,
Luo
,
Z. P.
,
Growney
,
E. S.
,
Berglund
,
L. J.
, and
An
,
K. N.
, 1994, “
Material Properties of the Plantar Aponeurosis
,”
Foot Ankle Int.
1071-1007,
15
(
10
), pp.
557
560
.
21.
Perry
,
J.
, 1983, “
Anatomy and Biomechanics of the Hindfoot
,”
Clin. Orthop. Relat. Res.
0009-921X,
177
, pp.
9
15
.
22.
Sarrafian
,
S. K.
, 1993, “
Biomechanics of the Subtalar Joint Complex
,”
Clin. Orthop. Relat. Res.
0009-921X,
290
, pp.
17
26
.
23.
Siegler
,
S.
,
Block
,
J.
, and
Schneck
,
C. D.
, 1988, “
The Mechanical Characteristics of the Collateral Ligaments of the Human Ankle Joint
,”
Foot Ankle
0198-0211,
8
(
5
), pp.
234
242
.
24.
Taniguchi
,
A.
,
Tanaka
,
Y.
,
Takakura
,
Y.
,
Kadono
,
K.
,
Maeda
,
M.
, and
Yamamoto
,
H.
, 2003, “
Anatomy of the Spring Ligament
,”
J. Bone Jt. Surg.
0021-9355,
85A
(
11
), pp.
2174
2178
.
25.
Netter
,
F. H.
, 2006,
Atlas of Human Anatomy
,
4th ed.
,
Saunders/Elsevier
,
Philadelphia, PA
.
26.
Pfaeffle
,
H. J.
,
Tomaino
,
M. M.
,
Grewal
,
R.
,
Xu
,
J.
,
Boardman
,
N. D.
,
Woo
,
S. L.
, and
Herndon
,
J. H.
, 1996, “
Tensile Properties of the Interosseous Membrane of the Human Forearm
,”
J. Orthop. Res.
0736-0266,
14
(
5
), pp.
842
845
.
27.
Nigg
,
B. M.
,
Skarvan
,
G.
,
Frank
,
C. B.
, and
Yeadon
,
M. R.
, 1990, “
Elongation and Forces of Ankle Ligaments in a Physiological Range of Motion
,”
Foot Ankle
0198-0211,
11
(
1
), pp.
30
40
.
28.
Murphy
,
G. A.
,
Pneumaticos
,
S. G.
,
Kamaric
,
E.
,
Noble
,
P. C.
,
Trevino
,
S. G.
, and
Baxter
,
D. E.
, 1998, “
Biomechanical Consequences of Sequential Plantar Fascia Release
,”
Foot Ankle Int.
1071-1007,
19
(
3
), pp.
149
152
.
29.
Renstrom
,
P.
,
Wertz
,
M.
,
Incavo
,
S.
,
Pope
,
M.
,
Ostgaard
,
H. C.
,
Arms
,
S.
, and
Haugh
,
L.
, 1988, “
Strain in the Lateral Ligaments of the Ankle
,”
Foot Ankle
0198-0211,
9
(
2
), pp.
59
63
.
You do not currently have access to this content.