Particulates that deposit in the acinus region of the lung have the potential to migrate through the alveolar wall and into the blood stream. However, the fluid mechanics governing particle transport to the alveolar wall are not well understood. Many physiological conditions are suspected to influence particle deposition including morphometry of the acinus, expansion and contraction of the alveolar walls, lung heterogeneities, and breathing patterns. Some studies suggest that the recirculation zones trap aerosol particles and enhance particle deposition by increasing their residence time in the region. However, particle trapping could also hinder aerosol particle deposition by moving the aerosol particle further from the wall. Studies that suggest such flow behavior have not been completed on realistic, nonsymmetric, three-dimensional, expanding alveolated geometry using realistic breathing curves. Furthermore, little attention has been paid to emphysemic geometries and how pathophysiological alterations effect deposition. In this study, fluid flow was examined in three-dimensional, expanding, healthy, and emphysemic alveolar sac model geometries using particle image velocimetry under realistic breathing conditions. Penetration depth of the tidal air was determined from the experimental fluid pathlines. Aerosol particle deposition was estimated by simple superposition of Brownian diffusion and sedimentation on the convected particle displacement for particles diameters of 100–750 nm. This study (1) confirmed that recirculation does not exist in the most distal alveolar regions of the lung under normal breathing conditions, (2) concluded that air entering the alveolar sac is convected closer to the alveolar wall in healthy compared with emphysematous lungs, and (3) demonstrated that particle deposition is smaller in emphysematous compared with healthy lungs.

1.
American Lung Association
, 2009, www.lungusa.orgwww.lungusa.org
2.
Kohlhäufl
,
M.
,
Brand
,
P.
,
Meyer
,
T.
,
Scheuch
,
G.
,
Weber
,
N.
,
Haubinger
,
K.
,
Schulz
,
J.
, and
Heyder
,
J.
, 1997, “
Detection of Impaired Intrapulmonary Convective Mixing by Aerosol Bolus Dispersion in Patients With Emphysema
,”
Eur. J. Med. Res.
0949-2321,
2
, pp.
121
128
.
3.
Sweeney
,
T.
,
Brian
,
J.
,
Leavitt
,
S.
, and
Godleski
,
J.
, 1987, “
Emphysema Alters the Deposition Pattern of Inhaled Particles in Hamsters
,”
Am. J. Pathology
,
128
, pp.
19
28
.
4.
Sturm
,
R.
, and
Hofmann
,
W.
, 2004, “
Stochastic Simulation of Alveolar Particle Deposition in Lungs Affected by Different Types of Emphysema
,”
J. Aerosol Med.
,
17
, pp.
357
372
.
5.
Tsuda
,
A.
,
Rogers
,
R.
,
Hydon
,
P.
, and
Butler
,
J.
, 2002, “
Chaotic Mixing Deep in the Lung
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
10173
10178
.
6.
Brand
,
P.
,
Rieger
,
C.
,
Schulz
,
H.
,
Beinert
,
T.
, and
Heyder
,
J.
, 1997, “
Aerosol Bolus Dispersion in Healthy Subjects
,”
Eur. Respir. J.
0903-1936,
10
, pp.
460
467
.
7.
Heyder
,
J.
,
Blanchard
,
J.
,
Feldman
,
H.
, and
Brian
,
J.
, 1988, “
Convective Mixing in Human Respiratory Tract: Estimates With Aerosol Boli
,”
J. Appl. Physiol.
8750-7587,
64
, pp.
1273
1278
.
8.
Zeltner
,
T.
,
Sweeney
,
T.
,
Skornik
,
W.
,
Feldman
,
H.
, and
Brian
,
J.
, 1995, “
Rentention and Clearance of 0.9 μm Particles Inhaled by Hamsters During Rest or Exercise
,”
J. Appl. Physiol.
8750-7587,
70
, pp.
1137
1145
.
9.
Darquenne
,
C.
, and
Prisk
,
K.
, 2004, “
Effect of Small Flow Reversals on Aerosol Mixing in the Alveolar Region of the Human Lung
,”
J. Appl. Physiol.
8750-7587,
97
, pp.
2083
2089
.
10.
Tsuda
,
A.
,
Henry
,
F.
, and
Butler
,
J.
, 1995, “
Chaotic Mixing of Alveolated Duct Flow in Rhythmically Expanding Pulmonary Acinus
,”
J. Appl. Physiol.
8750-7587,
79
. pp.
1055
1063
.
11.
Karl
,
A.
,
Henry
,
F.
, and
Tsuda
,
A.
, 2004, “
Low Reynolds Number Viscous Flow in an Alveolated Duct
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
420
429
.
12.
Sznitman
,
J.
,
Heimsch
,
F.
,
Heimsch
,
T.
,
Rusch
,
D.
, and
Rosgen
,
T.
, 2007, “
Three-Dimensional Convective Alveolar Flow Induced by Rhythmic Breathing Motion of the Pulmonary Acinus
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
658
665
.
13.
Tippe
,
A.
, and
Tsuda
,
A.
, 2000, “
Recirculating Flow in an Expanding Alveolar Model: Experimental Evidence of Flow-Induced Mixing of Aerosols in the Pulmonary Acinus
,”
J. Aerosol Sci.
0021-8502,
31
pp.
979
986
.
14.
Haber
,
S.
,
Yitzhak
,
D.
, and
Tsuda
,
A.
, 2003, “
Gravitational Deposition in a Rhythmically Expanding and Contracting Alveolus
,”
J. Appl. Physiol.
8750-7587,
95
, pp.
657
671
.
15.
Sznitman
,
J.
,
Heimsch
,
T.
,
Wildhaber
,
J. H.
,
Tsuda
,
A.
, and
Rosgen
,
T.
, 2009, “
Respiratory Flow Phenomena and Gravitational Deposition in a Three-Dimensional Space Filled Model of the Pulmonary Acinar Tree
,”
ASME J. Biomech. Eng.
0148-0731,
131
, pp.
031010
.
16.
Cinkotai
,
F. F.
, 1974, “
Fluid Flow in a Model Alveolar Sac
,”
J. Appl. Physiol.
8750-7587,
37
, pp.
249
251
.
17.
Davidson
,
M. R.
, and
Fitz-Gerald
,
J. M.
, 1972, “
Flow Patterns in Models of Small Airway Units of the Lung
,”
J. Fluid Mech.
0022-1120,
52
, pp.
161
177
.
18.
Choi
,
J.
, and
Chong
,
K.
, 2007, “
Mathematical Analysis of Particle Deposition in Human Lungs: An Improved Single Path Transport Model
,”
Inhalation Toxicol.
0895-8378,
19
, pp.
925
939
.
19.
Yue
,
G.
,
Fadl
,
A.
,
Barek
,
T.
,
Zhang
,
Z.
, and
Major
,
J.
, 2009, “
Experimental Study of Aerosol Deposition in Pulsating Balloon Structures
,”
Inhalation Toxicol
,
21
, pp.
215
222
. 0002-7820
20.
Otani
,
Y.
,
Emi
,
H.
,
Tanaka
,
T.
, and
Kamide
,
K.
, 1991, “
Application of Mixing and Deposition Data of Brownian Particles in a Model Alveolus to Human Alveoli
,”
J. Chem. Eng. Jpn.
0021-9592,
24
, pp.
154
159
.
21.
Haefeli-Bleuer
,
B.
, and
Weibel
,
E. R.
, 1988, “
Morphometry of the Human Pulmonary Acinus
,”
Anat. Rec.
0003-276X,
220
, pp.
401
414
.
22.
Klingele
,
T. G.
, and
Staub
,
N. C.
, 1970, “
Alveolar Shape Changes With Volume in Isolated, Air-Filled Lobes of Cat Lung
,”
J. Appl. Physiol.
8750-7587,
28
, pp.
411
414
.
23.
Kohlhäufl
,
M.
,
Brand
,
P.
,
Scheuch
,
G.
,
Meyer
,
T.
,
Schulz
,
H.
,
Haussinger
,
K.
, and
Heyder
J.
, 2000, “
Aerosol Morphometry and Aerosol Bolus Dispersion in Patients With CT-Determined Combined Pulmonary Emphysema and Lung Fibrosis
,”
J. Aerosol Med.
,
13
, pp.
117
124
.
24.
Mercer
,
R. R.
,
Laco
,
J. M.
, and
Crapo
,
J. D.
, 1987, “
Three-Dimensional Reconstruction of Alveoli in the Rat Lung for Pressure-Volume Relationships
,”
J. Appl. Physiol.
8750-7587,
62
, pp.
1480
1487
.
25.
Weibel
,
E. R.
, 1964, “
Morphometrics of the Lung. Handbook of Applied Physiology
,”
Respiration
, Washington, DC: Am. Physiol. Soc., sect. 3, Vol.
II
, Chap. 7, pp.
285
308
.
26.
Raffel
,
M.
, and
Willert
,
C. K.
, 1988,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
27.
Huang
,
H.
,
Dabiri
,
D.
, and
Gharib
,
M.
, 1997, “
On Errors of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1427
1440
.
28.
Yu
,
C. P.
,
Liu
,
C. S.
, and
Taulbee
,
D. B.
, 1977, “
Simultaneous Diffusion and Sedimentation of Aerosols in a Horizontal Cylinder
,”
J. Aerosol Sci.
0021-8502,
8
, pp.
309
316
.
29.
Ugural
,
A. C.
, 1999,
Stresses in Plates and Shells
,
2nd ed.
,
McGraw-Hill
,
New York
.
30.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfood
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
31.
Weibel
,
E. R.
, and
Gomez
,
D. M.
, 1962, “
Architecture of the Human Lung
,”
Science
0036-8075,
137
, pp.
577
585
.
32.
Womersley
,
J. R.
, 1955, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
, pp.
553
563
.
You do not currently have access to this content.