Microfabrication has become widely utilized to generate controlled microenvironments that establish chemical concentration gradients for a variety of engineering and life science applications. To establish microfluidic flow, the majority of existing devices rely upon additional facilities, equipment, and excessive reagent supplies, which together limit device portability as well as constrain device usage to individuals trained in technological disciplines. The current work presents our laboratory-developed bridged μLane system, which is a stand-alone device that runs via conventional pipette loading and can operate for several days without need of external machinery or additional reagent volumes. The bridged μLane is a two-layer polydimethylsiloxane microfluidic device that is able to establish controlled chemical concentration gradients over time by relying solely upon differences in reagent densities. Fluorescently labeled Dextran was used to validate the design and operation of the bridged μLane by evaluating experimentally measured transport properties within the microsystem in conjunction with numerical simulations and established mathematical transport models. Results demonstrate how the bridged μLane system was used to generate spatial concentration gradients that resulted in an experimentally measured Dextran diffusivity of (0.82±0.01)×106cm2/s.

1.
Atencia
,
J.
, and
Beebe
,
D. J.
, 2005, “
Controlled Microfluidic Interfaces
,”
Nature (London)
0028-0836,
437
(
7059
), pp.
648
655
.
2.
Folch
,
A.
, 2007, “BioMEMS and Cellular Biology: Perspectives and Applications,” J. Vis. Exp., (8), p. 300.
3.
Keenan
,
T. M.
, and
Folch
,
A.
, 2007, “
Biomolecular Gradients in Cell Culture Systems
,”
Lab Chip
1473-0197,
8
(
1
), pp.
34
57
.
4.
Mosadegh
,
B.
,
Huang
,
C.
,
Park
,
J. W.
,
Shin
,
H. S.
,
Chung
,
B. G.
,
Hwang
,
S. K.
,
Lee
,
K. H.
,
Kim
,
H. J.
,
Brody
,
J.
, and
Jeon
,
N. L.
, 2007, “
Generation of Stable Complex Gradients Across Two-Dimensional Surfaces and Three-Dimensional Gels
,”
Langmuir
0743-7463,
23
(
22
), pp.
10910
10912
.
5.
Paguirigan
,
A. L.
, and
Beebe
,
D. J.
, 2008, “
Microfluidics Meet Cell Biology: Bridging the Gap by Validation and Application of Microscale Techniques for Cell Biological Assays
,”
BioEssays
0265-9247,
30
(
9
), pp.
811
821
.
6.
Whitesides
,
G. M.
, 2006, “
The Origins and the Future of Microfluidics
,”
Nature (London)
0028-0836,
442
(
7101
), pp.
368
373
.
7.
Kamotani
,
Y.
,
Huh
,
D.
,
Futai
,
N.
, and
Takayama
,
S.
, 2007, “
At the Interface: Advanced Microfluidic Assays for Study of Cell Function
,”
BioMEMS and Biomedical Nanotechnology
, Vol. 1,
Springer Publishing
,
New York
, pp.
55
78
.
8.
McDonald
,
J.
,
Duffy
,
D.
,
Anderson
,
J.
,
Chiu
,
D. T.
,
Wu
,
H.
,
Schueller
,
O.
, and
Whitesides
,
G. M.
, 2000, “
Fabrication of Microfluidic Systems in Poly(dimethylsiloxane)
,”
Electrophoresis
0173-0835,
21
(
1
), pp.
27
40
.
9.
Weibel
,
D. B.
, and
Whitesides
,
G. M.
, 2006, “
Applications of Microfluidics in Chemical Biology
,”
Curr. Opin. Chem. Biol.
1367-5931,
10
(
6
), pp.
584
591
.
10.
Motoo
,
K.
,
Toda
,
N.
,
Arai
,
F.
,
Fukuda
,
T.
,
Sekiyama
,
K.
, and
Nakajima
,
M.
, 2008, “
Generation of Concentration Gradient From a Wave-Like Pattern by High Frequency Vibration of Liquid-Liquid Interface
,”
Biomed. Microdevices
1387-2176,
10
(
3
), pp.
329
335
.
11.
Tanaka
,
Y.
,
Morishima
,
K.
,
Shimizu
,
T.
,
Kikuchi
,
A.
,
Yamato
,
M.
,
Okano
,
T.
, and
Kitamori
,
T.
, 2006, “
Demonstration of a PDMS-Based Bio-Microactuator Using Cultured Cardiomyocytes to Drive Polymer Micropillars
,”
Lab Chip
1473-0197,
6
(
2
), pp.
230
235
.
12.
Yang
,
J.
,
Yang
,
J.
,
Yin
,
Z. Q.
,
Svir
,
I.
,
Xu
,
J.
,
Luo
,
H. Y.
,
Wang
,
M.
,
Cao
,
Y.
,
Hu
,
N.
,
Liao
,
Y. J.
, and
Zheng
,
X. L.
, 2009, “
Microfluidic Pool Structure for Cell Docking and Rapid Mixing
,”
Anal. Chim. Acta
0003-2670,
634
(
1
), pp.
61
67
.
13.
Ahmed
,
T.
,
Shimizu
,
T. S.
, and
Stocker
,
R.
, 2010, “
Bacterial Chemotaxis in Linear and Nonlinear Steady Microfluidic Gradients
,”
Nano Lett.
1530-6984,
10
(
9
), pp.
3379
3385
.
14.
Balagadde
,
F. K.
,
You
,
L.
,
Hansen
,
C. L.
,
Arnold
,
F. H.
, and
Quake
,
S. R.
, 2005, “
Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat
,”
Science
0036-8075,
309
(
5731
), pp.
137
140
.
15.
Chung
,
S.
,
Sudo
,
R.
,
Mack
,
P. J.
,
Wan
,
C. R.
,
Vickerman
,
V.
, and
Kamm
,
R. D.
, 2009, “
Cell Migration Into Scaffolds Under Co-Culture Conditions in a Microfluidic Platform
,”
Lab Chip
1473-0197,
9
(
2
), pp.
269
275
.
16.
Crowe
,
C. T.
,
Elger
,
D. F.
, and
Roberson
,
J. A.
, 2001,
Engineering Fluid Mechanics
,
7th ed.
,
Wiley
,
New York
.
17.
Dertinger
,
S.
,
Chiu
,
D. T.
,
Jeon
,
N. L.
, and
Whitesides
,
G. M.
, 2001, “
Generation of Gradients Having Complex Shapes Using Microfluidic Networks
,”
Anal. Chem.
0003-2700,
73
, pp.
1240
1246
.
18.
Jeon
,
N. L.
,
Baskararn
,
H.
,
Dertinger
,
S.
,
Whitesides
,
G. M.
,
Water
,
L. V.
, and
Toner
,
M.
, 2002, “
Neutrophil Chemotaxis in Linear and Complex Gradients of Interleukin-8 Formed in a Microfabricated Device
,”
Nat. Biotechnol.
1087-0156,
20
, pp.
826
830
.
19.
Tourovskaia
,
A.
,
Figueroa-Masot
,
X.
, and
Folch
,
A.
, 2005, “
Differentiation-on-a-Chip: A Microfluidic Platform for Long-Term Cell Culture Studies
,”
Lab Chip
1473-0197,
5
(
1
), pp.
14
19
.
20.
Zaman
,
M. H.
,
Trapani
,
L. M.
,
Sieminski
,
A. L.
,
Mackellar
,
D.
,
Gong
,
H.
,
Kamm
,
R. D.
,
Wells
,
A.
,
Lauffenburger
,
D. A.
, and
Matsudaira
,
P.
, 2006, “
Migration of Tumor Cells in 3D Matrices is Governed by Matrix Stiffness Along With Cell-Matrix Adhesion and Proteolysis
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
29
), pp.
10889
10894
.
21.
Zhao
,
B.
,
Moore
,
J. S.
, and
Beebe
,
D. J.
, 2001, “
Surface-Directed Liquid Flow Inside Microchannels
,”
Science
0036-8075,
291
(
5506
), pp.
1023
1026
.
22.
Haibo
,
X.
,
Yi
,
Z.
,
Xin
,
F.
,
Huayong
,
Y.
, and
Hongyang
,
D.
, 2008,
Study on Characteristics of Interface Between Multiple Laminar Streams and Application for Secondary Etching Inside Microchannels, Mechtroinc and Embedded Systems and Applications
, MESA 2008, IEEE/ASME International Conference, pp.
243
248
.
23.
Yamaguchi
,
Y.
,
Takagi
,
F.
,
Watari
,
T.
,
Yamashita
,
K.
,
Nakamura
,
H.
,
Shimizu
,
H.
, and
Maeda
,
H.
, 2004, “
Interface Configuration of the Two Layered Laminar Flow in a Curved Microchannel
,”
Chem. Eng. J.
0300-9467,
101
, pp.
367
372
.
24.
Jeon
,
N. L.
,
Dertinger
,
S.
,
Chiu
,
D. T.
,
Choi
,
I. S.
,
Stroock
,
A. D.
, and
Whitesides
,
G. M.
, 2000, “
Generation of Solution and Surface Gradients Using Microfluidic Systems
,”
Langmuir
0743-7463,
16
, pp.
8311
8316
.
25.
Du
,
Y.
,
Shim
,
J.
,
Vidula
,
M.
,
Hancock
,
M. J.
,
Lo
,
E.
,
Chung
,
B. G.
,
Borenstein
,
J. T.
,
Khabiry
,
M.
,
Cropek
,
D. M.
, and
Khademhosseini
,
A.
, 2009, “
Rapid Generation of Spatially and Temporally Controllable Long-Range Concentration Gradients in a Microfluidic Device
,”
Lab Chip
1473-0197,
9
(
6
), pp.
761
767
.
26.
Beebe
,
D. J.
,
Mensing
,
G. A.
, and
Walker
,
G. M.
, 2002, “
Physics and Applications of Microfluidics in Biology
,”
Annu. Rev. Biomed. Eng.
1523-9829,
4
, pp.
261
286
.
27.
Izquierdo
,
S.
,
Valdés
,
J. R.
,
Martínez
,
M.
,
Accolti
,
M.
,
Woudberg
,
S.
,
Asinari
,
P.
,
Miana
,
M.
, and
Du Plessis
,
J. P.
, 2010, “
Porous-Layer Model for Laminar Liquid Flow in Rough Microchannels
,”
Microfluid. Nanofluid.
1613-4982, pp.
1
13
.
28.
Bernard
,
A.
,
Renault
,
J. P.
,
Michel
,
B.
,
Bosshard
,
H. R.
, and
Delamarche
,
E.
, 2000, “
Microcontact Printing of Proteins
,”
Adv. Mater.
0935-9648,
12
(
14
), pp.
1067
1070
.
29.
Delamarche
,
E.
,
Bernard
,
A.
,
Schmid
,
H.
,
Michel
,
B.
, and
Biebuyck
,
H.
, 1997, “
Patterned Delivery of Immunoglobulins to Surfaces Using Microfluidic Networks
,”
Science
0036-8075,
276
(
5313
), pp.
779
781
.
30.
Frevert
,
C. W.
,
Boggy
,
G.
,
Keenan
,
T. M.
, and
Folch
,
A.
, 2006, “
Measurement of Cell Migration in Response to an Evolving Radial Chemokine Gradient Triggered by a Microvalve
,”
Lab Chip
1473-0197,
6
(
7
), pp.
849
856
.
31.
Goulpeau
,
J.
,
Lonetti
,
B.
,
Trouchet
,
D.
,
Ajdari
,
A.
, and
Tabeling
,
P.
, 2007, “
Building up Longitudinal Concentration Gradients in Shallow Microchannels
,”
Lab Chip
1473-0197,
7
(
9
), pp.
1154
1161
.
32.
Irimia
,
D.
,
Geba
,
D. A.
, and
Toner
,
M.
, 2006, “
Universal Microfluidic Gradient Generator
,”
Anal. Chem.
0003-2700,
78
(
10
), pp.
3472
3477
.
33.
Kamholz
,
A. E.
,
Weigl
,
B. H.
,
Finlayson
,
B. A.
, and
Yager
,
P.
, 1999, “
Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor
,”
Anal. Chem.
0003-2700,
71
(
23
), pp.
5340
5347
.
34.
Tan
,
D. C.
,
Yung
,
L. Y.
, and
Roy
,
P.
, 2010, “
Controlled Microscale Diffusion Gradients in Quiescent Extracellular Fluid
,”
Biomed. Microdevices
1387-2176,
12
(
3
), pp.
523
532
.
35.
Abhyankar
,
V. V.
,
Lokuta
,
M. A.
,
Huttenlocher
,
A.
, and
Beebe
,
D. J.
, 2006, “
Characterization of a Membrane-Based Gradient Generator for Use in Cell-Signaling Studies
,”
Lab Chip
1473-0197,
6
(
3
), pp.
389
393
.
36.
Fosser
,
K.
, and
Nuzzo
,
R.
, 2003, “
Fabrication of Patterned Multicomponent Protein Gradients and Gradient Arrays Using Microfluidic Depletion
,”
Anal. Chem.
0003-2700,
75
, pp.
5775
5782
.
37.
Kobel
,
S.
, and
Lutolf
,
M.
, 2010, “
High-Throughput Methods to Define Complex Stem Cell Niches
,”
BioTechniques
0736-6205,
48
(
4
), pp.
ix
xxii
.
38.
Millet
,
L. J.
,
Stewart
,
M. E.
,
Nuzzo
,
R. G.
, and
Gillette
,
M. U.
, 2010, “
Guiding Neuron Development With Planar Surface Gradients of Substrate Cues Deposited Using Microfluidic Devices
,”
Lab Chip
1473-0197,
10
(
12
), pp.
1525
1535
.
39.
Wu
,
H.
,
Huang
,
B.
, and
Zare
,
R. N.
, 2006, “
Generation of Complex, Static Solution Gradients in Microfluidic Channels
,”
J. Am. Chem. Soc.
0002-7863,
128
(
13
), pp.
4194
4195
.
40.
Li
,
C. W.
,
Chen
,
R.
, and
Yang
,
M.
, 2007, “
Generation of Linear and Non-Linear Concentration Gradients Along Microfluidic Channel by Microtunnel Controlled Stepwise Addition of Sample Solution
,”
Lab Chip
1473-0197,
7
(
10
), pp.
1371
1373
.
41.
Paliwal
,
S.
,
Iglesias
,
P. A.
,
Campbell
,
K.
,
Hilioti
,
Z.
,
Groisman
,
A.
, and
Levchenko
,
A.
, 2007, “
MAPK-Mediated Bimodal Gene Expression and Adaptive Gradient Sensing in Yeast
,”
Nature (London)
0028-0836,
446
(
7131
), pp.
46
51
.
42.
Kamholz
,
A. E.
, and
Yager
,
P.
, 2001, “
Theoretical Analysis of Molecular Diffusion in Pressure-Driven Laminar Flow in Microfluidic Channels
,”
Biophys. J.
0006-3495,
80
(
1
), pp.
155
160
.
43.
Breckenridge
,
M. T.
,
Egelhoff
,
T. T.
, and
Baskaran
,
H.
, 2010, “
A Microfluidic Imaging Chamber for the Direct Observation of Chemotactic Transmigration
,”
Biomed. Microdevices
1387-2176,
12
(
3
), pp.
543
553
.
44.
Lee
,
J.
,
Hu
,
Y.
, and
Li
,
D.
, 2005, “
Electrokinetic Concentration Gradient Generation Using a Converging–Diverging Microchannel
,”
Anal. Chim. Acta
0003-2670,
543
(
1–2
), pp.
99
108
.
45.
Velve-Casquillas
,
G.
,
Berrea
,
M. L.
,
Piela
,
M.
, and
Tran
,
P. T.
, 2010, “
Microfluidic Tools for Cell Biological Research
,”
Nanotoday
1748-0132,
5
(
1
), pp.
28
47
.
46.
Saadi
,
W.
,
Rhee
,
S. W.
,
Lin
,
F.
,
Vahidi
,
B.
,
Chung
,
B. G.
, and
Jeon
,
N. L.
, 2007, “
Generation of Stable Concentration Gradients in 2D and 3D Environments Using a Microfluidic Ladder Chamber
,”
Biomed. Microdevices
1387-2176,
9
(
5
), pp.
627
635
.
47.
Kanegasaki
,
S.
,
Nomura
,
Y.
,
Nitta
,
N.
,
Akiyama
,
S.
,
Tamatani
,
T.
,
Goshoh
,
Y.
,
Yoshida
,
T.
,
Sato
,
T.
, and
Kikuchi
,
Y.
, 2003, “
A Novel Optical Assay System for the Quantitative Measurement of Chemotaxis
,”
J. Immunol. Methods
0022-1759,
282
(
1–2
), pp.
1
11
.
48.
Lin
,
F.
, 2004, “
Generation of Dynamic Temporal and Spatial Concentration Gradients Using Microfluidic Devices
,”
Lab on a Chip
1473-0197,
4
(
3
), pp.
164
167
.
49.
Adler
,
M.
,
Polinkovsky
,
M.
,
Gutierrez
,
E.
, and
Groisman
,
A.
, 2010, “
Generation of Oxygen Gradients With Arbitrary Shapes in a Microfluidic Device
,”
Lab Chip
1473-0197,
10
(
3
), pp.
388
391
.
50.
Park
,
J. Y.
,
Kim
,
S. K.
,
Woo
,
D. H.
,
Lee
,
E. J.
,
Kim
,
J. H.
, and
Lee
,
S. H.
, 2009, “
Differentiation of Neural Progenitor Cells in a Microfluidic Chip-Generated Cytokine Gradient
,”
Stem Cells
1066-5099,
27
(
11
), pp.
2646
2654
.
51.
Lee
,
I.
,
Chan
,
K.
, and
Phillips
,
D. L.
, 1998, “
Growth of Electrodeposited Platinum Nanocrystals Studied by Atomic Force Microscopy
,”
Appl. Surf. Sci.
0169-4332,
136
(
4
), pp.
321
330
.
52.
McKnight
,
T. E.
,
Melechko
,
A. V.
,
Austin
,
D. W.
,
Sims
,
T.
,
Guillorn
,
M. A.
, and
Simpson
,
M. L.
, 2004, “
Microarrays of Vertically-Aligned Carbon Nanofiber Electrodes in an Open Fluidic Channel
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
7115
7125
.
53.
Vazquez
,
M.
,
McKinley
,
G.
,
Mitnik
,
L.
,
Desmarais
,
S.
,
Matsudaira
,
P.
, and
Ehrlich
,
D.
, 2002, “
Electrophoretic Injection Within Microdevices
,”
Anal. Chem.
0003-2700,
74
(
9
), pp.
1952
1961
.
54.
Vazquez
,
M.
,
Schmalzing
,
D.
,
Matsudaira
,
P.
,
Ehrlich
,
D.
, and
McKinley
,
G.
, 2001, “
Shear-Induced Degradation of Linear Polyacrylamide Solutions During Pre-Electrophoretic Loading
,”
Anal. Chem.
0003-2700,
73
(
13
), pp.
3035
3044
.
55.
Holden
,
M. A.
,
Kumar
,
S.
,
Castellana
,
E. T.
,
Beskok
,
A.
, and
Cremer
,
P. S.
, 2003, “
Generating Fixed Concentration Arrays in a Microfluidic Device
,”
Sens. Actuators B
0925-4005,
92
, pp.
199
207
.
56.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
.
57.
Feng
,
J. J.
,
Wang
,
A. J.
,
Fan
,
J.
,
Xu
,
J. J.
, and
Chen
,
H. Y.
, 2010, “
Hydrophilic Biopolymer Grafted on Poly(dimethylsiloxane) Surface for Microchip Electrophoresis
,”
Anal. Chim. Acta
0003-2670,
658
(
1
), pp.
75
80
.
58.
Gennerich
,
A.
, and
Schild
,
D.
, 2002, “
Anisotropic Diffusion in Mitral Cell Dendrites Revealed by Fluorescence Correction Spectroscopy
,”
Biophys. J.
0006-3495,
83
, pp.
510
522
.
59.
Haller
,
M. F.
, and
Saltzman
,
W. M.
, 1998, “
Localized Delivery of Proteins in the Brain: Can Transport Be Customized?
,”
Pharm. Res.
0724-8741,
15
(
3
), pp.
377
385
.
60.
Hiemenz
,
P. C.
, and
Rajagopalan
,
R.
, 1997,
Principles of Colloid and Surface Chemistry
,
3rd ed.
,
Marcel Dekker
,
New York
.
61.
Ioan
,
C. E.
,
Aberle
,
T.
, and
Burchard
,
W.
, 2000, “
Structure Properties of Dextran. 2. Dilute Solution
,”
Macromolecules
0024-9297,
33
(
15
), pp.
5730
5739
.
62.
Saltzman
,
W. M.
,
Radomsky
,
M. L.
,
Whaley
,
K. J.
, and
Cone
,
R. A.
, 1994, “
Antibody Diffusion in Human Cervical Mucus
,”
Biophys. J.
0006-3495,
66
(
2
), pp.
508
515
.
63.
Yamada
,
M.
, and
Seki
,
M.
, 2006, “
Microfluidic Particle Sorter Employing Flow Splitting and Recombining
,”
Anal. Chem.
0003-2700,
78
(
4
), pp.
1357
1362
.
64.
Kim
,
D.
,
Lokuta
,
M. A.
,
Huttenlocher
,
A.
, and
Beebe
,
D. J.
, 2009, “
Selective and Tunable Gradient Device for Cell Culture and Chemotaxis Study
,”
Lab Chip
1473-0197,
9
(
12
), pp.
1797
1800
.
65.
Englert
,
D. L.
,
Manson
,
M. D.
, and
Jayaraman
,
A.
, 2010, “
Investigation of Bacterial Chemotaxis in Flow-Based Microfluidic Devices
,”
Nat. Protoc.
1750-2799,
5
(
5
), pp.
864
872
.
You do not currently have access to this content.