Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89±1.77MPa, while the corresponding mean strain was 7.15±1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08±7.91MPa, and the dissipated energy density was 5.67±4.42MPa. The latter variable was strongly related to the volume fraction (R2=0.83) but the correlation improved only marginally with the inclusion of fabric (R2=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.

1.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
, 2001, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
307
333
.
2.
Matsuura
,
M.
,
Eckstein
,
F.
,
Lochmüller
,
E. -M.
, and
Zysset
,
P. K.
, 2008, “
The role of Fabric in the Quasi-Static Compressive Mechanical Properties of Human Trabecular Bone From Various Anatomical Locations
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
1
), pp.
27
42
.
3.
Goulet
,
R. W.
,
Goldstein
,
S. A.
,
Ciarelli
,
M. J.
,
Kuhn
,
J. L.
,
Brown
,
M. B.
, and
Feldkamp
,
L. A.
, 1994, “
The Relationship Between the Structural and Orthogonal Compressive Properties of Trabecular Bone
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
375
389
.
4.
Hodgskinson
,
R.
, and
Currey
,
J. D.
, 1990, “
The Effect of Variation in Structure on the Young’s Modulus of Cancellous Bone: A Comparison of Human and Non-Human Material
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
204
(
2
), pp.
115
121
.
5.
Hildebrand
,
T.
,
Laib
,
A.
,
Mller
,
R.
,
Dequeker
,
J.
, and
Regsegger
,
P.
, 1999, “
Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data From Spine, Femur, Iliac Crest, and Calcaneus
,”
J. Bone Miner. Res.
0884-0431,
14
(
7
), pp.
1167
1174
.
6.
Laib
,
A.
,
Barou
,
O.
,
Vico
,
L.
,
Lafage-Proust
,
M. H.
,
Alexandre
,
C.
, and
Rgsegger
,
P.
, 2000, “
3D Micro-Computed Tomography of Trabecular and Cortical Bone Architecture With Application to a Rat Model of Immobilisation Osteoporosis
,”
Med. Biol. Eng. Comput.
0140-0118,
38
(
3
), pp.
326
332
.
7.
Zysset
,
P. K.
, 2003, “
A Review of Morphology-Elasticity Relationships in Human Trabecular Bone: Theories and Experiments
,”
J. Biomech.
0021-9290,
36
(
10
), pp.
1469
1485
.
8.
Rincón-Kohli
,
L.
, and
Zysset
,
P.
, 2009, “
Multi-Axial Mechanical Properties of Human Trabecular Bone
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
(
3
), pp.
195
208
.
9.
Chevalier
,
Y.
,
Charlebois
,
M.
,
Pahr
,
D.
,
Varga
,
P.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
, 2008, “
A Patient-Specific Finite Element Methodology to Predict Damage Accumulation in Vertebral Bodies Under Axial Compression, Sagittal Flexion and Combined Loads
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
11
(
5
), pp.
477
487
.
10.
Pahr
,
D.
, and
Zysset
,
P.
, 2008, “
From High-Resolution CT Data to Finite Element Models: Development of an Integrated Modular Framework
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
1
), pp.
45
57
.
11.
Varga
,
P.
, and
Zysset
,
P. K.
, 2009, “
Sampling Sphere Orientation Distribution: An Efficient Method to Quantify Trabecular Bone Fabric on Grayscale Images
,”
Med. Image Anal.
1361-8415,
13
(
3
), pp.
530
541
.
12.
Hayes
,
W. C.
, and
Carter
,
D. R.
, 1976, “
Postyield Behavior of Subchondral Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
10
(
4
), pp.
537
544
.
13.
Fyhrie
,
D. P.
, and
Schaffler
,
M. B.
, 1994, “
Failure Mechanisms in Human Vertebral Cancellous Bone
,”
Bone
,
15
(
1
), pp.
105
109
.
14.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge, England
.
15.
Keaveny
,
T. M.
,
Pinilla
,
T. P.
,
Crawford
,
R. P.
,
Kopperdahl
,
D. L.
, and
Lou
,
A.
, 1997, “
Systematic and Random Errors in Compression Testing of Trabecular Bone
,”
J. Orthop. Res.
0736-0266,
15
(
1
), pp.
101
110
.
16.
Chevalier
,
Y.
,
Pahr
,
D.
,
Allmer
,
H.
,
Charlebois
,
M.
, and
Zysset
,
P.
, 2007, “
Validation of a Voxel-Based FE Method for Prediction of the Uniaxial Apparent Modulus of Human Trabecular Bone Using Macroscopic Mechanical Tests and Nanoindentation
,”
J. Biomech.
0021-9290,
40
(
15
), pp.
3333
3340
.
17.
Hoger
,
A.
, 1987, “
The Stress Conjugate to Logarithmic Strain
,”
Int. J. Solids Struct.
0020-7683,
23
(
12
), pp.
1645
1656
.
18.
Zysset
,
P.
, and
Rincón
,
L.
, 2006, “
An Alternative Fabric-based Yield and Failure Criterion for Trabecular Bone
,”
Mechanics of Biological Tissue
,
Springer
,
New York
, pp.
457
470
.
19.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
0021-9290,
34
(
5
), pp.
569
577
.
20.
Morgan
,
E. F.
,
Yeh
,
O. C.
,
Chang
,
W. C.
, and
Keaveny
,
T. M.
, 2001, “
Nonlinear Behavior of Trabecular Bone at Small Strains
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
1
), pp.
1
9
.
21.
Nazarian
,
A.
,
Stauber
,
M.
,
Zurakowski
,
D.
,
Snyder
,
B. D.
, and
Müller
,
R.
, 2006, “
The Interaction of Microstructure and Volume Fraction in Predicting Failure in Cancellous Bone
,”
Bone
,
39
(
6
), pp.
1196
1202
.
22.
Helgason
,
B.
,
Perilli
,
E.
,
Schileo
,
E.
,
Taddei
,
F.
,
Brynjlfsson
,
S.
, and
Viceconti
,
M.
, 2008, “
Mathematical Relationships Between Bone Density and Mechanical Properties: A Literature Review
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
23
(
2
), pp.
135
146
.
You do not currently have access to this content.