Vitrectomy is an ophthalmic microsurgical procedure that removes part or all of the vitreous humor from the eye. The procedure uses a vitreous cutter consisting of a narrow shaft with a small orifice at the end through which the humor is aspirated by an applied suction. An internal guillotine oscillates back and forth across the orifice to alter the local shear response of the humor. In this work, a computational study of the flow in a vitreous cutter is conducted in order to gain better understanding of the vitreous behavior and provide guidelines for a new vitreous cutter design. The flow of a Newtonian surrogate of vitreous in a two-dimensional analog geometry is investigated using a finite difference-based immersed boundary method with an algebraically formulated fractional-step method. A series of numerical experiments is performed to evaluate the impact of cutting rate, aspiration pressure, and opening/closing transition on the vitreous cutter flow rate and transorifice pressure variation during vitrectomy. The mean flow rate is observed to increase approximately linearly with aspiration pressure and also increase nearly linearly with duty cycle. A study of time-varying flow rate, velocity field, and vorticity illuminates the flow behavior during each phase of the cutting cycle and shows that the opening/closing transition plays a key role in improving the vitreous cutter’s efficacy and minimizing the potential damage to surrounding tissue. The numerical results show similar trend in flow rate as previous in vitro experiments using water and balanced saline solution and also demonstrate that high duty cycle and slow opening/closing phases lead to high flow rate and minor disturbance to the eye during vitrectomy, which are the design requirements of an ideal vitreous cutter.

1.
Lee
,
B.
,
Litt
,
M.
, and
Buchsbaum
,
G.
, 1992, “
Rheology of the Vitreous Body: Part 1:Viscoelasticity of Human Vitreous
,”
Biorheology
0006-355X,
29
, pp.
521
533
.
2.
Nickerson
,
C. S.
,
Park
,
J.
,
Kornfield
,
J. A.
, and
Karageozian
,
H.
, 2008, “
Rheological Properties of the Vitreous and the Role of Hyaluronic Acid
,”
J. Biomech.
0021-9290,
41
(
9
), pp.
1840
1846
.
3.
Wang
,
C. C. T.
, and
Charles
,
S.
, 1983, “
Microsurgical Instrumentation for Vitrectomy: Part I
,”
J. Clin. Eng.
0363-8855,
8
(
4
), pp.
321
328
.
4.
Wang
,
C. C. T.
, and
Charles
,
S.
, 1984, “
Microsurgical Instrumentation for Vitrectomy: Part II
,”
J. Clin. Eng.
0363-8855,
9
(
1
), pp.
63
71
.
5.
Fujii
,
G. Y.
,
de Juan
,
E.
, Jr.
,
Humayun
,
M. S.
,
Chang
,
T. S.
,
Pieramici
,
D. J.
,
Barnes
,
A.
, and
Kent
,
D.
, 2002, “
Initial Experience Using the Transconjunctival Sutureless Vitrectomy System for Vitreorential Surgery
,”
Ophthalmology
0161-6420,
109
(
10
), pp.
1814
1820
.
6.
Ibarra
,
M. S.
,
Hermel
,
M.
,
Prenner
,
J. L.
, and
Hassan
,
T. S.
, 2005, “
Longer-Term Outcomes of Transconjunctival Sutureless 25-Gauge Vitrectomy
,”
Am. J. Ophthalmol.
0002-9394,
139
(
5
), pp.
831
836
.
7.
Hubschman
,
J. -P.
, 2005, “
Comparison of Different Vitrectomy System
,”
J. Fr. Ophtalmol
0181-5512,
28
(
6
), pp.
606
609
.
8.
Hubschman
,
J. -P.
,
Gupta
,
A.
,
Bourla
,
D. H.
,
Culjat
,
M.
,
Yu
,
F.
, and
Schwartz
,
S. D.
, 2008, “
20-, 23- and 25-Gauge Vitreous Cutters
,”
Retina
0275-004X,
28
(
2
), pp.
249
257
.
9.
Magalhaes
,
O.
, Jr.
,
Chong
,
L.
,
DeBoer
,
C.
,
Bhadri
,
P.
,
Kerns
,
R.
,
Barnes
,
A.
,
Fang
,
S.
, and
Humayun
,
M.
, 2008, “
Vitreous Dynamics: Vitreous Flow Analysis in 20-, 23-, and 25-Gauge Cutters
,”
Retina
0275-004X,
28
(
2
), pp.
236
241
.
10.
Magalhães
,
O.
, Jr.
,
Maia
,
M.
,
Maia
,
A.
,
Penha
,
F.
,
Dib
,
E.
,
Farah
,
M. E.
, and
Schor
,
P.
, 2008, “
Fluid Dynamic in Three 25-Gauge Vitrectomy Systems: Principles for Use in Vitreoretinal Surgery
,”
Acta Ophthalmol.
0001-639X,
86
(
2
), pp.
156
159
.
11.
Sato
,
T.
,
Kusaka
,
S.
,
Oshima
,
Y.
, and
Fujikado
,
T.
, 2008, “
Analyses of Cutting and Aspirating Properties of Vitreous Sutter With High-Speed Camera
,”
Retina
0275-004X,
28
(
5
), pp.
749
754
.
12.
Fang
,
S. Y.
,
DeBoer
,
C. M. T.
, and
Humayun
,
M. S.
, 2007, “
Performance Analysis of New-Generation Vitreous Cutters
,”
Graefe’s Arch. Clin. Exp. Ophthalmol.
,
246
(
1
), pp.
61
67
.
13.
Hubschman
,
J. -P.
,
Bourges
,
J. -L.
,
Tsui
,
I.
,
Reddy
,
S.
,
Yu
,
F.
, and
Schwartz
,
S. D.
, 2009, “
Effect of Cutting Phase on Flow Rate in 20-, 23- and 25-Gauge Vitreous Cutters
,”
Retina
0275-004X,
29
(
9
), pp.
1289
1293
.
14.
Perot
,
J. B.
, 1993, “
An Analysis of the Fractional Step Method
,”
J. Comput. Phys.
0021-9991,
108
(
1
), pp.
51
58
.
15.
Taira
,
K.
, and
Colonius
,
T.
, 2007, “
The Immersed Boundary Method: A Projection Approach
,”
J. Comput. Phys.
0021-9991,
225
(
2
), pp.
2118
2137
.
16.
2004,
Tissue Engineering and Novel Delivery System
,
M. J.
Yaszemski
,
D. J.
Trantolo
,
K. -U.
Lewandrowski
,
V.
Hasirci
,
D. E.
Altobelli
, and
D. L.
Wise
, eds.,
Marcel Dekker
,
New York
.
17.
Meuer
,
H. -J.
, and
Ecbers
,
C.
, 1990, “
Changes in Density and Viscosity of Chicken Egg Albumen and Yolk During Incubation
,”
J. Exp. Zool.
0022-104X,
255
(
1
), pp.
16
21
.
18.
Wals
,
K. T.
, and
Friberg
,
T. R.
, 2008, “
Vitreous Substitute Removal Rates With the Accurus and Millennium Vitrectomy Systems
,”
Ophthalmic Surg. Lasers
1082-3069,
39
(
2
), pp.
174
176
.
19.
Gresho
,
P. M.
, 1991, “
Incompressible Fluid Dynamics: Some Fundamental Formulation Issues
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
413
453
.
20.
Boersma
,
B. J.
, 2000, “
Entrainment Boundary Conditions for Free Shear Flows
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
13
(
4
), pp.
357
363
.
21.
Charles
,
S.
, 2004, “
An Engineering Approach to Vitreoretinal Surgery
,”
Retina
0275-004X,
24
(
3
), pp.
435
444
.
You do not currently have access to this content.