We carry out three-dimensional high-resolution numerical simulations of a bileaflet mechanical heart valve under physiologic pulsatile flow conditions implanted at different orientations in an anatomic aorta obtained from magnetic resonance imaging (MRI) of a volunteer. We use the extensively validated for heart valve flow curvilinear-immersed boundary (CURVIB) fluid-structure interaction (FSI) solver in which the empty aorta is discretized with a curvilinear, aorta-conforming grid while the valve is handled as an immersed boundary. The motion of the valve leaflets are calculated through a strongly coupled FSI algorithm implemented in conjunction with the Aitken convergence acceleration technique. We perform simulations for three valve orientations, which differ from each other by 45 deg and compare the results in terms of leaflet motion and flow field. We show that the valve implanted symmetrically relative to the symmetry plane of the ascending aorta curvature exhibits the smallest overall asymmetry in the motion of its two leaflets and lowest rebound during closure. Consequently, we hypothesize that this orientation is beneficial to reduce the chance of intermittent regurgitation. Furthermore, we find that the valve orientation does not significantly affect the shear stress distribution in the aortic lumen, which is in agreement with previous studies.

1.
Anderson
,
G. H.
,
Hellums
,
J. D.
,
Moake
,
J.
, and
Al-frey
,
C. P.
, Jr.
, 1978, “
Platelet Response to Shear Stress: Changes in Serotonin Uptake, Serotonin Release, and ADP Induced Aggregation
,”
Thromb. Res.
0049-3848,
13
(
6
), pp.
1039
1047
.
2.
Holme
,
P. A.
,
Orvim
,
U.
,
Hamers
,
M.
,
Solum
,
N. O.
,
Brosstad
,
F. R.
,
Barstad
,
R. M.
, and
Sakariassen
,
K. S.
, 1997, “
Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries With a Severe Stenosis
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
(
4
), pp.
646
653
.
3.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Nunez
,
G.
,
Kapadvan-jwala
,
M.
, and
Dewanjee
,
M. K.
, 1993, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
13
(
12
), pp.
1806
1813
.
4.
Stein
,
P. D.
, and
Sabbah
,
H. N.
, 1974, “
Measured Turbulence and Its Effect on Thrombus Formation
,”
Circ. Res.
0009-7330,
35
(
4
), pp.
608
614
.
5.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
H. A.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2007, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
1070-6631,
19
, p.
067105
.
6.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A.
,
Deutsch
,
S.
, and
Tarbell
,
J.
, 2000, “
Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
431
441
.
7.
Ellis
,
J. T.
,
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Saxena
,
R.
, and
Yoganathan
,
A. P.
, 1996, “
Velocity Measurements and Flow Patterns Within the Hinge Region of a Medtronic Parallel Bileaflet Mechanical Valve With Clear Housing
,”
J. Heart Valve Dis.
0966-8519,
5
(
6
), pp.
591
599
.
8.
Liu
,
J. S.
,
Lu
,
P. C.
, and
Chu
,
S. H.
, 2000, “
Turbulence Characteristics Downstream of Bileaflet Aortic Valve Prostheses
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
118
124
.
9.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
0160-564X,
27
(
9
), pp.
840
846
.
10.
Nyboe
,
C.
,
Funder
,
J. A.
,
Smerup
,
M. H.
,
Nygaard
,
H.
, and
Hasenkam
,
J. M.
, 2006, “
Turbulent Stress Measurements Downstream of Three Bileaflet Heart Valve Designs in Pigs
,”
Eur. J. Cardiothorac. Surg.
,
29
(
6
), pp.
1008
1013
.
11.
Nygaard
,
H.
,
Paulsen
,
P. K.
,
Hasenkam
,
J. M.
,
Pedersen
,
E. M.
, and
Rovsing
,
P. E.
, 1994, “
Turbulent Stresses Downstream of Three Mechanical Aortic Valve Prostheses in Human Beings
,”
J. Thorac. Cardiovsc. Surg.
,
107
, pp.
438
446
. 0002-7820
12.
Yoganathan
,
A. P.
,
Woo
,
Y. R.
, and
Sung
,
H. W.
, 1986, “
Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Prostheses
,”
J. Biomech.
0021-9290,
19
(
6
), pp.
433
442
.
13.
Bluestein
,
D.
,
Li
,
Y.
, and
Krukenkamp
,
I.
, 2002, “
Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
0021-9290,
35
(
12
), pp.
1533
1540
.
14.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
, 2000, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
125
134
.
15.
Cheng
,
R.
,
Lai
,
Y. G.
, and
Chandran
,
K. B.
, 2004, “
Three-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics
,”
Ann. Biomed. Eng.
0090-6964,
32
(
11
), pp.
1471
1483
.
16.
De Hart
,
J.
,
Peters
,
G.
,
Schreurs
,
P.
, and
Baaijens
,
F.
, 2003, “
A Three-Dimensional Computational Analysis of Fluid–Structure Interaction in the Aortic Valve
,”
J. Biomech.
0021-9290,
36
(
1
), pp.
103
112
.
17.
Grigioni
,
M.
,
Daniele
,
C.
,
Del Gaudio
,
C.
,
Morbiducci
,
U.
,
Balducci
,
A.
,
D’Avenio
,
G.
, and
Barbaro
,
V.
, 2005, “
Three-Dimensional Numeric Simulation of Flow Through an Aortic Bileaflet Valve in a Realistic Model of Aortic Root
,”
ASAIO J.
0162-1432,
51
(
3
), pp.
176
183
.
18.
Krishnan
,
S.
,
Udaykumar
,
H.
,
Marshall
,
J.
, and
Chan-dran
,
K.
, 2006, “
Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure
,”
Ann. Biomed. Eng.
0090-6964,
34
(
10
), pp.
1519
1534
.
19.
Nobili
,
M.
,
Morbiducci
,
U.
,
Ponzini
,
R.
,
Del Gaudio
,
C.
,
Balducci
,
A.
,
Grigioni
,
M.
,
Maria Montevecchi
,
F.
, and
Redaelli
,
A.
, 2008, “
Numerical Simulation of the Dynamics of a Bileaflet Prosthetic Heart Valve Using a Fluid-Structure Interaction Approach
,”
J. Biomech.
0021-9290,
41
(
11
), pp.
2539
2550
.
20.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
, 2007, “
Asymmetric Opening of a Simple Bileaflet Valve
,”
Phys. Rev. Lett.
0031-9007,
98
(
21
), p.
214503
.
21.
Tai
,
C.
,
Liew
,
K.
, and
Zhao
,
Y.
, 2007, “
Numerical Simulation of 3D Fluid–Structure Interaction Flow Using an Immersed Object Method With Overlapping Grids
,”
Comput. Struct.
0045-7949,
85
(
11–14
), pp.
749
762
.
22.
Sotiropoulos
,
F.
, and
Borazjani
,
I.
, 2009, “
A Review of State-Of-The-Art Numerical Methods for Simulating Flow Through Mechanical Heart Valves
,”
Med. Biol. Eng. Comput.
0140-0118,
47
(
3
), pp.
245
256
.
23.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Jones
,
S. C.
, 2004, “
Fluid Mechanics of Heart Valves
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
331
362
.
24.
Travis
,
B. R.
,
Leo
,
H. L.
,
Shah
,
P. A.
,
Frakes
,
D. H.
, and
Yoganathan
,
A. P.
, 2002, “
An Analysis of Turbulent Shear Stresses in Leakage Flow Through a Bileaflet Mechanical Prostheses
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
155
165
.
25.
Kleine
,
P.
,
Perthel
,
M.
,
Nygaard
,
H.
,
Hansen
,
S. B.
,
Paulsen
,
P. K.
,
Riis
,
C.
, and
Laas
,
J.
, 1998, “
Medtronic Hall Versus St. Jude Medical Mechanical Aortic Valve: Downstream Turbulences With Respect to Rotation in Pigs
,”
J. Heart Valve Dis.
0966-8519,
7
(
5
), pp.
548
555
.
26.
Laas
,
J.
,
Kleine
,
P.
,
Hasenkam
,
M.
, and
Nygaard
,
H.
, 1999, “
Orientation of Tilting Disc and Bileaflet Aortic Valve Substitutes for Optimal Hemodynamics
,”
Ann. Thorac. Surg.
0003-4975,
68
(
3
), pp.
1096
1099
.
27.
Kleine
,
P.
,
Perthel
,
M.
,
Hasenkam
,
J.
,
Nygaard
,
H.
,
Hansen
,
S.
, and
Laas
,
J.
, 2000, “
High Intensity Transient Signals (HITS) as a Parameter for Optimum Orientation of Mechanical Aortic Valves
,”
Thorac. Cardiovasc. Surg.
0171-6425,
48
(
6
), pp.
360
363
.
28.
Kleine
,
P.
,
Perthel
,
M.
,
Hasenkam
,
J.
,
Nygaard
,
H.
,
Hansen
,
S.
, and
Laas
,
J.
, 2000, “
Downstream Turbulence and High Intensity Transient Signals (HITS) Following Aortic Valve Replacement With Medtronic Hall or St. Jude Medical Valve Substitutes
,”
Eur. J. Cardiothorac. Surg.
,
17
(
1
), pp.
20
24
.
29.
Kleine
,
P.
,
Scherer
,
M.
,
Abdel-Rahman
,
U.
,
Klesius
,
A.
,
Ackermann
,
H.
, and
Moritz
,
A.
, 2002, “
Effect of Mechanical Aortic Valve Orientation on Coronary Artery Flow: Comparison of Tilting Disc Versus Bileaflet Pros-Theses in Pigs
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
124
(
5
), pp.
925
932
.
30.
van’t Veer
,
M.
,
van Straten
,
B.
,
vande Vosse
,
F.
, and
Pijls
,
N.
, 2007, “
Influence of Orientation of Bi-Leaflet Valve Prostheses on Coronary Perfusion Pressure in Humans
,”
Interact. Cardiovasc. Thorac. Surg.
,
6
(
5
), pp.
588
592
.
31.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2008, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
276
297
.
32.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
, 2008, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
0021-9991,
227
(
16
), pp.
7587
7620
.
33.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
, 2010, “
High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta
,”
Ann. Biomed. Eng.
0090-6964,
38
(
2
), pp.
326
344
.
34.
Borazjani
,
I.
, 2008, “
Numerical Simulations of Fluid/Structure Interaction Problems in Biological Flows
,” Ph.D. thesis, University of Minnesota, Twin Cities, Minnesota, USA.
35.
Ge
,
L.
, and
Sotiropoulos
,
F.
, 2007, “
A Numerical Method for Solving the 3D Unsteady Incompressible Navier Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries
,”
J. Comput. Phys.
0021-9991,
225
(
2
), pp.
1782
1809
.
36.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
, 2008, “
Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
0022-0949,
211
, pp.
1541
1558
.
37.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
, 2005, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
0021-9991,
207
(
2
), pp.
457
492
.
38.
de Zélicourt
,
D.
,
Pekkan
,
K.
,
Kitajima
,
H.
,
Frakes
,
D.
, and
Yoganathan
,
A.
, 2005, “
Single-Step Stereolithography of Complex Anatomical Models for Optical Flow Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
204
207
.
39.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
, 1988. “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2: Proceedings of the 1988 Summer Program
, Paper No. SEE N89-2453818-34, pp.
193
208
.
40.
Grigioni
,
M.
,
Daniele
,
C.
,
D’Avenio
,
G.
, and
Barbaro
,
V.
, 2002, “
Evaluation of the Surface-Averaged Load Exerted on a Blood Element by the Reynolds Shear Stress Field Provided by Artificial Cardiovascular Devices
,”
J. Biomech.
0021-9290,
35
(
12
), pp.
1613
1622
.
41.
Allen
,
P.
, and
Robertson
,
R.
, 1967, “
The Significance of Intermittent Regurgitation in Aortic Valve Prostheses
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
54
(
4
), pp.
549
556
.
42.
Eichinger
,
W.
,
Hettich
,
I.
,
Bleiziffer
,
S.
,
Günzinger
,
R.
,
Hutter
,
A.
,
Bauernschmitt
,
R.
, and
Lange
,
R.
, 2010. “
Intermittent Regurgitation Caused by Incomplete Leaflet Closure of the Medtronic ADVANTAGE Bileaflet Heart Valve: Analysis of the Underlying Mechanism
,”
J. Thorac. Cardiovas. Surg.
,
140
(
3
), pp.
611
616
. 0002-7820
43.
Grinberg
,
L.
, and
Karniadakis
,
G.
, 2008, “
Outflow Boundary Conditions for Arterial Networks With Multiple Outlets
,”
Ann. Biomed. Eng.
0090-6964,
36
(
9
), pp.
1496
1514
.
You do not currently have access to this content.