The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.

1.
Blitterswijk
,
C. V.
, 2008,
Tissue Engineering
,
Academic
,
New York
.
2.
Hollister
,
S. J.
,
Maddox
,
R. D.
, and
Taboas
,
J. M.
, 2002, “
Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints
,”
Biomaterials
0142-9612,
23
, pp.
4095
4103
.
3.
Irwin
,
E. F.
,
Saha
,
K.
,
Rosenbluth
,
M.
,
Gamble
,
L. J.
,
Castner
,
D. G.
, and
Healy
,
K. E.
, 2008, “
Modulus-Dependent Macrophage Adhesion and Behavior
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
19
(
10
), pp.
1363
1382
.
4.
Beningo
,
K. A.
, and
Wang
,
Y. L.
, 2002, “
Flexible Substrata for the Detection of Cellular Traction Forces
,”
Trends Cell Biol.
0962-8924,
12
(
2
), pp.
79
84
.
5.
Wang
,
Y.
,
Pan
,
J.
,
Han
,
X.
,
Sinka
,
C.
, and
Ding
,
L.
, 2008, “
A Phenomenological Model for the Degradation of Biodegradable Polymers
,”
Biomaterials
0142-9612,
29
, pp.
3393
3401
.
6.
Han
,
X.
, and
Pan
,
J.
, 2009, “
A Model for Simultaneous Crystallisation and Biodegradation of Biodegradable Polymers
,”
Biomaterials
0142-9612,
30
, pp.
423
430
.
7.
Sanz-Herrera
,
J. A.
,
Garcia-Aznar
,
J. M.
, and
Doblare
,
M.
, 2008, “
On Scaffold Designing for Bone Regeneration: A Computational Multiscale Approach
,”
Acta Biomater.
1742-7061,
5
(
1
), pp.
219
229
.
8.
Wang
,
Y.
,
Han
,
X.
,
Pan
,
J.
, and
Sinka
,
C.
, 2010, “
An Entropy Spring Model for the Young’s Modulus Change of Biodegradable Polymers During Biodegradation
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
3
, pp.
14
21
.
9.
Perale
,
G.
,
Arosio
,
P.
,
Moscatelli
,
D.
,
Barri
,
V.
,
Müller
,
M.
,
Maccagnan
,
S.
, and
Masi
,
M.
, 2009, “
A New Model of Resorbable Device Degradation and Drug Release: Transient 1-Dimension Diffusional Model
,”
J. Controlled Release
0168-3659,
136
, pp.
196
205
.
10.
Milan
,
J.
,
Planell
,
J. A.
, and
Lacroix
,
D.
, 2009, “
Computational Modeling of the Mechanical Environment of Osteogenesis Within a Polylactic Acid–Calcium Phosphate Glass Scaffold
,”
Biomaterials
0142-9612,
30
, pp.
4219
4226
.
11.
Kelly
,
D. J.
, and
Prendergast
,
P. J.
, 2004, “
Effect of a Degraded Core on the Mechanical Behavior of Tissue Engineered Cartilage Constructs: A Poroelastic Finite Element Analysis
,”
Med. Biol. Eng. Comput.
0140-0118,
42
(
1
) pp.
9
13
.
12.
Fornes
,
T. D.
, and
Paul
,
D. R.
, 2003, “
Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories
,”
Polymer
0032-3861,
44
, pp.
4993
5013
.
13.
Hollister
,
S. J.
, and
Kikuchi
,
N.
, 1992, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites
,”
Comput. Mech.
0178-7675,
10
, pp.
73
95
.
14.
Berger
,
H.
,
Kari
,
S.
,
Gabbert
,
U.
,
Rodríguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
, and
Guinovart-Díaz
,
R.
, 2005, “
A Comprehensive Numerical Homogenisation Technique for Calculating Effective Coefficients of Uniaxial Piezoelectric Fibre Composites
,”
Mater. Sci. Eng., A
0921-5093,
412
, pp.
53
60
.
15.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1993,
Micromechanics: Overall Properties of Heterogeneous Solids
,
1st ed.
,
Elsevier Science
,
New York
.
16.
Sinha
,
J. K.
, and
Friswell
,
M. I.
, 2003, “
The Use of Model Updating for Reliable Finite Element Modeling and Fault Diagnosis of Structural Components Used in Nuclear Plants
,”
Nucl. Eng. Des.
0029-5493,
223
, pp.
11
23
.
17.
Chen
,
X. B.
, and
Zhang
,
W. J.
, 2003, “
Off-Line Control of Time-Pressure Dispensing Processes for Electronics Packaging
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
26
(
4
), pp.
286
293
.
18.
Li
,
J. P.
,
de Wijna
,
J. R.
,
Blitterswijk
,
C. V.
, and
de Groot
,
K.
, 2006, “
Porous Ti6Al4V Scaffold Directly Fabricating by Rapid Prototyping: Preparation and in Vitro Experiment
,”
Biomaterials
0142-9612,
27
, pp.
1223
1235
.
19.
Akao
,
M.
,
Aoki
,
H.
, and
Kato
,
K.
, 1981, “
Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications
,”
J. Mater. Sci.
0022-2461,
16
, pp.
809
812
.
20.
He
,
L. H.
,
Standard
,
O. C.
,
Huang
,
T. T. Y.
,
Latella
,
B. A.
, and
Swain
,
M. V.
, 2008, “
Mechanical Behavior of Porous Hydroxyapatite
,”
Acta Biomater.
1742-7061,
4
, pp.
577
586
.
21.
Nielsen
,
L. E.
, 1974,
Mechanical Properties of Polymers and Composites
, Vol.
2
,
Dekker
,
New York
, pp.
379
452
.
22.
Chasin
,
M.
, and
Langer
,
R.
, 1990,
Biodegradable Polymers as Drug Delivery Systems
,
Dekker
,
New York
.
23.
Éfendiev
,
E.
,
Gadzhieva
,
N.
,
Ilyasly
,
T.
,
Abbasova
,
R.
, and
Yakh’yaev
,
F.
, 2006, “
Structure of Polyethylene Films Containing Copper Nanoparticles
,”
J. Appl. Spectrosc.
0021-9037,
73
(
3
), pp.
462
465
.
24.
Pitt
,
C. G.
,
Chasalow
,
F. I.
,
Hibionada
,
Y. M.
, and
Schindler
,
A.
, 1981, “
Aliphatic Polyesters I. The Degradation of Poly(-Caprolactone) in Vivo
,”
J. Appl. Polym. Sci.
0021-8995,
26
, pp.
3779
3787
.
25.
Kalnin
,
J.
, and
Kotomin
,
E.
, 1998, “
Modified Maxwell-Garnett Equation for the Effective Transport Coefficients in Inhomogeneous Media
,”
J. Phys. A
0305-4470,
31
, pp.
7227
7234
.
26.
Hanna
,
G.
,
Noble
,
R.
, and
Michel
,
F.
, Jr.
, 1987, “
Interfacial Resistance for Carboxylic Acid Transfer From Decane to Water
,”
J. Phys. Chem.
0022-3654,
91
(
2
), pp.
362
365
.
27.
Haik-Creguer
,
K.
,
Dunbar
,
G.
,
Sabel
,
B.
, and
Schroeder
,
U.
, 1998, “
Small Drug Sample Fabrication of Controlled Release Polymers Using the Microextrusion Method
,”
J. Neurosci. Methods
0165-0270,
80
, pp.
37
40
.
28.
Hollister
,
S. J.
, and
Kikuchi
,
N.
, 1994, “
Homogenization Theory and Digital Imaging: A Basis for Studying the Mechanics and Design Principles of Bone Tissue
,”
Biotechnol. Bioeng.
0006-3592,
43
, pp.
586
596
.
29.
Chevalier
,
Y.
,
Pahr
,
D.
,
Allmer
,
H.
,
Charlebois
,
M.
, and
Zysset
,
P.
, 2007, “
Validation of a Voxel-Based FE Method for Prediction of the Uniaxial Apparent Modulus of Human Trabecular Bone Using Macroscopic Mechanical Tests and Nanoindentation
,”
J. Biomech.
0021-9290,
40
, pp.
3333
3340
.
30.
Boyd
,
S. K.
, and
Muller
,
R.
, 2006, “
Smooth Surface Meshing for Automated Finite Element Model Generation From 3D Image Data
,”
J. Biomech.
0021-9290,
39
, pp.
1287
1295
.
You do not currently have access to this content.