Measure of the cross-sectional area (CSA) of biological specimens is a primary concern for many biomechanical tests. Different procedures are presented in literature but besides the fact that noncontact techniques are required during mechanical testing, most of these procedures lack accuracy or speed. Moreover, they often require a precise positioning of the specimen, which is not always feasible, and do not enable the measure of the same section during tension. The objective of this study was to design a noncontact, fast, and accurate device capable of acquiring CSA of specimens mounted on a testing machine. A system based on the horizontal linear displacement of two charge-coupled device reflectance laser devices next to the specimen, one for each side, was chosen. The whole measuring block is mounted on a vertical linear guide to allow following the measured zone during sample tension (or compression). The device was validated by measuring the CSA of metallic rods machined with geometrical shapes (circular, hexagonal, semicircular, and triangular) as well as an equine superficial digital flexor tendon (SDFT) in static condition. We also performed measurements during mechanical testing of three SDFTs, obtaining the CSA variations until tendon rupture. The system was revealed to be very fast with acquisition times in the order of 0.1 s and interacquisition time of about 1.5 s. Measurements of the geometrical shapes yielded mean errors lower than 1.4% (n=20 for each shape) while the tendon CSA at rest was 90.29±1.69mm2(n=20). As for the tendons that underwent tension, a mean of 60 measures were performed for each test, which lasted about 2 min until rupture (at 20 mm/min), finding CSA variations linear with stress (R2>0.85). The proposed device was revealed to be accurate and repeatable. It is easy to assemble and operate and capable of moving to follow a defined zone on the specimen during testing. The system does not need precise centering of the sample and can perform noncontact measures during mechanical testing; therefore, it can be used to measure variations of the specimen CSA during a tension (or compression) test in order to determine, for instance, the true stress and transverse deformations.

1.
Cronkite
,
A. E.
, 1936, “
The Tensile Strength of Human Tendons
,”
Anat. Rec.
0003-276X,
64
(
2
), pp.
173
186
.
2.
Nachemson
,
A. L.
, and
Evans
,
J. H.
, 1968, “
Some Mechanical Properties of the Third Human Lumbar Interlaminar Ligament (Ligamentum Flavum)
,”
J. Biomech.
0021-9290,
1
(
3
), pp.
211
220
.
3.
Trent
,
P. S.
,
Walker
,
P. S.
, and
Wolf
,
B.
, 1976, “
Ligament Length Patterns, Strength, and Rotational Axes of the Knee Joint
,”
Clin. Orthop. Relat. Res.
0009-921X,
117
, pp.
263
270
.
4.
Walker
,
L. B.
,
Harris
,
E. H.
, and
Benedict
,
J. V.
, 1964, “
Stress-Strain Relationship in Human Cadaveric Plantaris Tendon: A Preliminary Study
,”
Med. Biol. Eng. Comput.
0140-0118,
2
(
1
), pp.
31
38
.
5.
Shrive
,
N. G.
,
Lam
,
T. C.
,
Damson
,
E.
, and
Frank
,
C. B.
, 1988, “
A New Method of Measuring the Cross-Sectional Area of Connective Tissue Structures
,”
J. Biomech. Eng.
0148-0731,
110
(
2
), pp.
104
109
.
6.
Race
,
A.
, and
Amis
,
A. A.
, 1996, “
Cross-Sectional Area Measurement of Soft Tissue. A New Casting Method
,”
J. Biomech.
0021-9290,
29
(
9
), pp.
1207
1212
.
7.
Abrahams
,
M.
, 1967, “
Mechanical Behaviour of Tendon In Vitro. A Preliminary Report
,”
Med. Biol. Eng. Comput.
0140-0118,
5
(
5
), pp.
433
443
.
8.
Vanbrocklin
,
J. D.
, and
Ellis
,
D. G.
, 1965, “
A Study of the Mechanical Behavior of Toe Extensor Tendons Under Applied Stress
,”
Arch. Phys. Med. Rehabil.
0003-9993,
46
, pp.
369
373
.
9.
Elden
,
H. R.
, 1963, “
The Interaction of Connective Tissue With Aqueous Urea. I. Reversible and Irreversible Effects
,”
Biochim. Biophys. Acta
0006-3002,
75
, pp.
37
47
.
10.
Gratz
,
C. M.
, 1931, “
Tensile Strength and Elasticity Tests on Human Fascia Lata
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
13
(
2
), pp.
334
340
.
11.
Hewitt
,
J.
,
Guilak
,
F.
,
Glisson
,
R.
, and
Vail
,
T. P.
, 2001, “
Regional Material Properties of the Human Hip Joint Capsule Ligaments
,”
J. Orthop. Res.
0736-0266,
19
(
3
), pp.
359
364
.
12.
Nunley
,
R. L.
, 1958, “
The Ligamenta Flava of the Dog. A Study of Tensile and Physical Properties
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
37
(
5
), pp.
256
268
.
13.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
, and
Leyvraz
,
P. F.
, 1999, “
Strain Rate Effect on the Mechanical Behavior of the Anterior Cruciate Ligament-Bone Complex
,”
Med. Eng. Phys.
1350-4533,
21
(
2
), pp.
95
100
.
14.
Rigby
,
B. J.
,
Hirai
,
N.
,
Spikes
,
J. D.
, and
Eyring
,
H.
, 1959, “
The Mechanical Properties of Rat Tail Tendon
,”
J. Gen. Physiol.
0022-1295,
43
(
2
), pp.
265
283
.
15.
Woo
,
S. L.
,
Gomez
,
M. A.
,
Seguchi
,
Y.
,
Endo
,
C. M.
, and
Akeson
,
W. H.
, 1983, “
Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation
,”
J. Orthop. Res.
0736-0266,
1
(
1
), pp.
22
29
.
16.
Wright
,
D. G.
, and
Rennels
,
D. C.
, 1964, “
A Study of the Elastic Properties of Plantar Fascia
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
46
, pp.
482
492
.
17.
Ellis
,
D. G.
, 1968, “
A Shadow Amplitude Method for Measuring Cross-Sectional Areas of Biological Specimens
,” Houston, TX, 51.6, pp.
175
186
.
18.
Gupta
,
B. N.
,
Subramanian
,
K. N.
,
Brinker
,
W. O.
, and
Gupta
,
A. N.
, 1971, “
Tensile Strength of Canine Cranial Cruciate Ligaments
,”
Am. J. Vet. Res.
0002-9645,
32
(
1
), pp.
183
190
.
19.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Cowden
,
C.
, and
Slauterbeck
,
J.
, 2005, “
An Alternative Method of Anthropometry of Anterior Cruciate Ligament Through 3-D Digital Image Reconstruction
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
551
555
.
20.
Iaconis
,
F.
,
Steindler
,
R.
, and
Marinozzi
,
G.
, 1987, “
Measurements of Cross-Sectional Area of Collagen Structures (Knee Ligaments) by Means of an Optical Method
,”
J. Biomech.
0021-9290,
20
(
10
), pp.
1003
1010
.
21.
Reiser
,
M.
,
Rupp
,
N.
,
Karpf
,
P. M.
,
Feuerbach
,
S.
, and
Anacker
,
H.
, 1981, “
Evaluation of the Cruciate Ligaments by Ct
,”
Eur. J. Radiol.
0720-048X,
1
(
1
), pp.
9
15
.
22.
Crevier-Denoix
,
N.
,
Ruel
,
Y.
,
Dardillat
,
C.
,
Jerbi
,
H.
,
Sanaa
,
M.
,
Collobert-Laugier
,
C.
,
Ribot
,
X.
,
Denoix
,
J. M.
, and
Pourcelot
,
P.
, 2005, “
Correlations Between Mean Echogenicity and Material Properties of Normal and Diseased Equine Superficial Digital Flexor Tendons: An In Vitro Segmental Approach
,”
J. Biomech.
0021-9290,
38
(
11
), pp.
2212
2220
.
23.
Gillis
,
C.
,
Sharkey
,
N.
,
Stover
,
S. M.
,
Pool
,
R. R.
,
Meagher
,
D. M.
, and
Willits
,
N.
, 1995, “
Ultrasonography as a Method to Determine Tendon Cross-Sectional Area
,”
Am. J. Vet. Res.
0002-9645,
56
(
10
), pp.
1270
1274
.
24.
Ikai
,
M.
, and
Fukunaga
,
T.
, 1968, “
Calculation of Muscle Strength Per Unit Cross-Sectional Area of Human Muscle by Means of Ultrasonic Measurement
,”
Eur. J. Appl. Physiol.
0301-5548,
26
(
1
), pp.
26
32
.
25.
Lee
,
T. Q.
, and
Woo
,
S. L.
, 1988, “
A New Method for Determining Cross-Sectional Shape and Area of Soft Tissues
,”
J. Biomech. Eng.
0148-0731,
110
(
2
), pp.
110
114
.
26.
Woo
,
S. L.
,
Danto
,
M. I.
,
Ohland
,
K. J.
,
Lee
,
T. Q.
, and
Newton
,
P. O.
, 1990, “
The Use of a Laser Micrometer System to Determine the Cross-Sectional Shape and Area of Ligaments: A Comparative Study With Two Existing Methods
,”
J. Biomech. Eng.
0148-0731,
112
(
4
), pp.
426
431
.
27.
Moon
,
D. K.
,
Abramowitch
,
S. D.
, and
Woo
,
S. L.
, 2006, “
The Development and Validation of a Charge-Coupled Device Laser Reflectance System to Measure the Complex Cross-Sectional Shape and Area of Soft Tissues
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
3071
3075
.
28.
Pokhai
,
G. G.
,
Oliver
,
M. L.
, and
Gordon
,
K. D.
, 2009, “
A New Laser Reflectance System Capable of Measuring Changing Cross-Sectional Area of Soft Tissues During Tensile Testing
,”
J. Biomech. Eng.
0148-0731,
131
(
9
), p.
094504
.
29.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
, 2003, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
726
731
.
30.
Zhang
,
J.
,
Jin
,
G. C.
,
Meng
,
L. B.
,
Jian
,
L. H.
,
Wang
,
A. Y.
, and
Lu
,
S. B.
, 2005, “
Strain and Mechanical Behavior Measurements of Soft Tissues With Digital Speckle Method
,”
J. Biomed. Opt.
1083-3668,
10
(
3
), p.
034021
.
31.
Cheng
,
V. W. T.
, and
Screen
,
H. R. C.
, 2007, “
The Micro-Structural Strain Response of Tendon
,”
J. Mater. Sci.
0022-2461,
42
(
21
), pp.
8957
8965
.
32.
Revel
,
G. M.
,
Scalise
,
A.
, and
Scalise
,
L.
, 2003, “
Measurement of Stress-Strain and Vibrational Properties of Tendons
,”
Meas. Sci. Technol.
0957-0233,
14
(
8
), pp.
1427
1436
.
33.
Crevier
,
N.
,
Pourcelot
,
P.
,
Denoix
,
J. M.
,
Geiger
,
D.
,
Bortolussi
,
C.
,
Ribot
,
X.
, and
Sanaa
,
M.
, 1996, “
Segmental Variations of In Vitro Mechanical Properties in Equine Superficial Digital Flexor Tendons
,”
Am. J. Vet. Res.
0002-9645,
57
(
8
), pp.
1111
1117
.
34.
Smith
,
R. K.
,
Jones
,
R.
, and
Webbon
,
P. M.
, 1994, “
The Cross-Sectional Areas of Normal Equine Digital Flexor Tendons Determined Ultrasonographically
,”
Equine Vet. J.
0425-1644,
26
(
6
), pp.
460
465
.
35.
Salisbury
,
S. T. S.
,
Buckley
,
C. P.
, and
Zavatsky
,
A. B.
, 2008, “
Image-Based Non-Contact Method to Measure Cross-Sectional Areas and Shapes of Tendons and Ligaments
,”
Meas. Sci. Technol.
0957-0233,
19
(
4
), p.
045705
.
36.
Liu
,
M. J. J.
,
Chou
,
S. M.
,
Goh
,
K. L.
, and
Tan
,
S. H.
, 2008, “
Cross-Sectional Area Measurement of Soft Tissues In Vitro: A Non-Contact Laser Scan Method
,”
J. Mech. Med. Biol.
,
8
(
3
), pp.
353
361
.
You do not currently have access to this content.