In this paper, frequency response (dynamic compression and recovery) is suggested as a new physical marker to differentiate between breast cancer cells (MCF7) and normal cells (MCF10A). A single cell is placed on the laminated piezoelectric actuator and a piezoresistive microcantilever is placed on the upper surface of the cell at a specified preload displacement (or an equivalent force). The piezoelectric actuator excites the single cell in a sinusoidal fashion and its dynamic deformation is then evaluated from the displacement converted by measuring the voltage output through a piezoresistor in the microcantilever. The microcantilever has a flat contact surface with no sharp tip, making it possible to measure the overall properties of the cell rather than the local properties. These results indicate that the MCF7 cells are more deformable in quasi-static conditions compared with MCF10A cells, consistent with known characteristics. Under conditions of high frequency of over 50 Hz at a 1μm preload displacement, 1 Hz at a 2μm preload displacement, and all frequency ranges tested at a 3μm preload displacement, MCF7 cells showed smaller deformation than MCF10A cells. MCF7 cells have higher absorption than MCF10A cells such that MCF7 cells appear to have higher deformability according to increasing frequency. Moreover, larger preload and higher frequencies are shown to enhance the differences in cell deformability between the MCF7 cells and MCF10A cells, which can be used as a physical marker for differentiating between MCF10A cells and MCF7 cells, even for high-speed screening devices.

1.
Suresh
,
S.
, 2007, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Mater.
1359-6454,
55
, pp.
3989
4014
.
2.
Engström
,
K. G.
,
Möller
,
B.
, and
Meiselman
,
H. J.
, 1992, “
Optical Evaluation of Red Blood Cell Geometry Using Micropipette Aspiration
,”
Blood Cells
0340-4684,
18
, pp.
241
258
.
3.
Evans
,
E.
, and
Yeung
,
A.
, 1989, “
Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipette Aspiration
,”
Biophys. J.
0006-3495,
56
, pp.
151
160
.
4.
Hochmuth
,
R. M.
, 2000, “
Micropipette Aspiration of Living Cells (Review)
,”
J. Biomech.
0021-9290,
33
, pp.
15
22
.
5.
Sato
,
M.
,
Theret
,
D. P.
,
Wheeler
,
L. T.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
, 1990, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
J. Biomech. Eng.
0148-0731,
112
, pp.
263
268
.
6.
Theret
,
D. P.
,
Levesque
,
M. J.
,
Sato
,
M.
,
Nerem
,
R. M.
, and
Wheeler
,
L. T.
, 1988, “
The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements
,”
J. Biomech. Eng.
0148-0731,
110
, pp.
190
199
.
7.
Leipzig
,
N. D.
, and
Athanasiou
,
K. A.
, 2005, “
Unconfined Creep Compression of Chondrocytes
,”
J. Biomech.
0021-9290,
38
, pp.
77
85
.
8.
Brouhard
,
G. J.
,
Schek
,
H. T.
, and
Hunt
,
A. J.
, 2003, “
Advanced Optical Tweezers for the Study of Cellular and Molecular Biomechanics
,”
IEEE Trans. Biomed. Eng.
0018-9294,
50
(
1
), pp.
121
125
.
9.
Chen
,
J.
,
Fabry
,
B.
,
Schiffrin
,
E. L.
, and
Wang
,
N.
, 2001, “
Twisting Integrin Receptors Increase Endothelin-1 Gene Expression in Endothelial Cells
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
280
, pp.
C1475
C1484
.
10.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2003, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
2259
2280
.
11.
Li
,
P.
,
Shi
,
K.
, and
Liu
,
Z.
, 2005, “
Manipulation and Spectroscopy of a Single Particle by Use of White-Light Optical Tweezers
,”
Opt. Lett.
0146-9592,
30
(
2
), pp.
156
158
.
12.
Mills
,
J. P.
,
Qie
,
L.
,
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2004, “
Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell With Optical Tweezers
,”
Mech. Chem. Biosyst.
1546-2048,
1
, pp.
169
180
.
13.
Guck
,
J.
,
Schinkinger
,
S.
,
Lincoln
,
B.
,
Wottawah
,
F.
,
Ebert
,
S.
,
Romeyke
,
M.
,
Lenz
,
D.
,
Erickson
,
H.
,
Ananthakrishnan
,
R.
,
Mitchell
,
D.
,
Käs
,
J.
,
Ulvick
,
S.
, and
Bilby
,
C.
, 2005, “
Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence
,”
Biophys. J.
0006-3495,
88
, pp.
3689
3698
.
14.
Costa
,
K. D.
,
Ho
,
M. M. Y.
, and
Hung
,
C. T.
, 2003, “
Multi-Scale Measurement of Mechanical Properties of Soft Samples With Atomic Force Microscopy
,”
Summer Bioengineering Conference
.
15.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
, 2007, “
Nanomechanical Analysis of Cells From Cancer Patients
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
780
783
.
16.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
, 2007, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
0006-3495,
92
, pp.
1784
1791
.
17.
Murakoshi
,
M.
,
Yoshida
,
N.
,
Iida
,
K.
,
Kuman
,
S.
,
Kobayashi
,
T.
, and
Wada
,
H.
, 2006, “
Local Mechanical Properties of Mouse Outer Hair Cells: Atomic Force Microscopic Study
,”
Auris Nasus Larynx
0385-8146,
33
, pp.
149
157
.
18.
Li
,
Q. S.
,
Lee
,
G. Y.
,
Ong
,
C. N.
, and
Lim
,
C. T.
, 2008, “
AFM Indentation Study of Breast Cancer Cells
,”
Biochem. Biophys. Res. Commun.
0006-291X,
374
, pp.
609
613
.
19.
Hertz
,
H.
, 1895, “
Ueber die Beruehrung Elastischer Koerper (Contact Between Elastic Bodies)
,” Gesammelte Werke (Collected Works), Vol.
1
, Leipzig, Germany.
You do not currently have access to this content.