Folding of the cerebral cortex is a critical phase of brain development in higher mammals but the biomechanics of folding remain incompletely understood. During folding, the growth of the cortical surface is heterogeneous and anisotropic. We developed and applied a new technique to measure spatial and directional variations in surface growth from longitudinal magnetic resonance imaging (MRI) studies of a single animal or human subject. MRI provides high resolution 3D image volumes of the brain at different stages of development. Surface representations of the cerebral cortex are obtained by segmentation of these volumes. Estimation of local surface growth between two times requires establishment of a point-to-point correspondence (“registration”) between surfaces measured at those times. Here we present a novel approach for the registration of two surfaces in which an energy function is minimized by solving a partial differential equation on a spherical surface. The energy function includes a strain-energy term due to distortion and an “error energy” term due to mismatch between surface features. This algorithm, implemented with the finite element method, brings surface features into approximate alignment while minimizing deformation in regions without explicit matching criteria. The method was validated by application to three simulated test cases and applied to characterize growth of the ferret cortex during folding. Cortical surfaces were created from MRI data acquired in vivo at 14 days, 21 days, and 28 days of life. Deformation gradient and Lagrangian strain tensors describe the kinematics of growth over this interval. These quantitative results illuminate the spatial, temporal, and directional patterns of growth during cortical folding.

1.
Pang
,
T.
,
Atefy
,
R.
, and
Sheen
,
V.
, 2008, “
Malformations of Cortical Development
,”
Neurologist
1074-7931,
14
, pp.
181
191
.
2.
Van Essen
,
D. C.
, 1997, “
A Tension-Based Theory of Morphogenesis and Compact Wiring in the Central Nervous System
,”
Nature (London)
0028-0836,
385
, pp.
313
318
.
3.
Fischl
,
B.
,
Sereno
,
M. I.
,
Tootell
,
R. B. H.
, and
Dale
,
A. M.
, 1999, “
High-Resolution Intersubject Averaging and a Coordinate System for the Cortical Surface
,”
Hum. Brain Mapp.
1065-9471,
8
, pp.
272
284
.
4.
Glaunes
,
J.
,
Vaillant
,
M.
, and
Miller
,
M. I.
, 2004, “
Landmark Matching via Large Deformation Diffeomorphisms on the Sphere
,”
J. Math. Imaging Vision
0924-9907,
20
, pp.
179
200
.
5.
Joshi
,
A.
,
Leahy
,
R.
,
Toga
,
A. W.
, and
Shattuck
,
D.
, 2009, “
A Framework for Brain Registration via Simultaneous Surface and Volume Flow
,”
IPMI 2009, LNCS 5636
, pp.
576
588
.
6.
Liu
,
T.
,
Shen
,
D.
, and
Davatzikos
,
C.
, 2004, “
Deformable Registration of Cortical Structures via Hybrid Volumetric and Surface Warping
,”
Neuroimage
1053-8119,
22
, pp.
1790
1801
.
7.
Postelnicu
,
G.
,
Zollei
,
L.
, and
Fischl
,
B.
, 2009, “
Combined Volumetric and Surface Registration
,”
IEEE Trans. Med. Imaging
0278-0062,
28
(
4
), pp.
508
522
.
8.
Qiu
,
A.
,
Albert
,
M.
,
Younes
,
L.
, and
Miller
,
M. I.
, 2009, “
Time Sequence Diffeomorphic Metric Mapping and Parallel Transport Track Time-Dependent Shape Changes
,”
Neuroimage
1053-8119,
45
, pp.
S51
S60
.
9.
Litke
,
N.
,
Droske
,
M.
,
Rumpf
,
M.
, and
Schroder
,
P.
, 2005, “
An image Processing Approach to Surface Matching
,”
Eurographics Symposium on Geometry Processing
, Vienna, Austria.
10.
Shi
,
Y.
,
Thompson
,
P. M.
,
Dinov
,
I.
,
Osher
,
S.
, and
Toga
,
A. W.
, 2007, “
Direct Cortical Mapping via Solving Partial Differential Equations on Implicit Surfaces
,”
Med. Image Anal.
1361-8415,
11
, pp.
207
223
.
11.
Oguz
,
I.
,
Cates
,
J.
,
Fletcher
,
T.
,
Whitaker
,
R.
,
Cool
,
D.
,
Aylward
,
S.
, and
Styner
,
M.
, 2008, “
Cortical Correspondence Using Entropy-Based Particle Systems and Local Features
,”
Proceedings of the Fifth IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, pp.
1637
1640
.
12.
Terzopoulos
,
D.
,
Platt
,
J.
,
Barr
,
A.
, and
Fleischer
,
K.
, 1987, “
Elastically Deformable Models
,”
Comput. Graph.
0097-8930,
21
(
4
), pp.
205
214
.
13.
Thompson
,
P. M.
, and
Toga
,
A. W.
, 1996, “
A Surface-Based Technique for Warping Three-Dimensional Images of the Brain
,”
IEEE Trans. Med. Imaging
0278-0062,
15
(
4
), pp.
402
417
.
14.
Vaillant
,
M.
, and
Glaunes
,
J.
, 2005, “
Surface Matching via Currents
,” Information Processing for Medical ImagingCO.
15.
Van Essen
,
D. C.
,
Drury
,
H. A.
,
Dickson
,
J.
,
Harwell
,
J.
,
Hanlon
,
D.
, and
Anderson
,
C. H.
, 2001, “
An Integrated Software Suite for Surface-Based Analyses of Cerebral Cortex
,”
J. Am. Med. Inform. Assoc.
1067-5027,
8
(
5
), pp.
443
459
.
16.
Xue
,
H.
,
Srinivasan
,
L.
,
Jiang
,
S.
,
Rutherford
,
M.
,
Edwards
,
A. D.
,
Rueckert
,
D.
, and
Hajnal
,
J.
, 2007, “
Longitudinal Cortical Registration for Developing Neonates
,”
MICCAI 2007, Part II, LNCS
, pp.
127
135
.
17.
Yeo
,
B.
,
Sabuncu
,
M.
,
Vercauteren
,
T.
,
Ayache
,
N.
,
Fischl
,
B.
, and
Golland
,
P.
, 2008, “
Spherical Demons: Fast Surface Registration
,”
MICCAI 2008, Part I, LNCS 5241
, pp.
745
753
.
18.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformations
,
Dover
,
Mineola, NY
.
19.
Taber
,
L. A.
, 2004,
Nonlinear Theory of Elasticity: Applications in Biomechanics
,
World Scientific
,
Singapore
.
20.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
John Wiley and Sons
,
West Sussox, UK
.
21.
Bonet
,
J.
, and
Wood
,
R. D.
, 2008,
Nonlinear Continuum Mechanics For Finite Element Analysis
,
Cambridge University Press
,
Cambridge
.
22.
Szabo
,
B. A.
, and
Babuska
,
I.
, 1991,
Finite Element Analysis
,
Wiley
,
New York
.
23.
Filas
,
B. A.
,
Knutsen
,
A. K.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
, 2008, “
A New Method for Measuring Deformation of Folding Surfaces During Morphogenesis
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
061010
.
24.
Saad
,
Y.
, and
Schultz
,
M. H.
, 1986, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
856
869
.
25.
Barnette
,
A. R.
,
Neil
,
J. J.
,
Kroenke
,
C. D.
,
Griffith
,
J. L.
,
Epstein
,
A. A.
,
Bayly
,
P. V.
,
Knutsen
,
A. K.
, and
Inder
,
T. E.
, 2009, “
Characterization of Brain Development in the Ferret via MRI
,”
Pediatr. Res.
0031-3998,
66
(
1
), pp.
80
84
.
26.
Kroenke
,
C. D.
,
Taber
,
E. N.
,
Leigland
,
L. A.
,
Knutsen
,
A. K.
, and
Bayly
,
P. V.
, 2009, “
Regional Patterns of Cerebral Cortical Differentiation Determined by Diffusion Tensor MRI
,”
Cereb. Cortex
1047-3211,
19
, pp.
2916
2929
.
You do not currently have access to this content.