Mechanical forces play an important role during brain development. In the early embryo, the anterior end of the neural tube enlarges and differentiates into the major brain subdivisions, including three expanding vesicles (forebrain, midbrain, and hindbrain) separated by two constrictions. Once the anterior neuropore and the spinal neurocoel occlude, the brain tube undergoes further regional growth and expansion in response to increasing cerebrospinal fluid pressure. Although this is known to be a response to mechanical loads, the mechanical properties of the developing brain remain largely unknown. In this work, we measured regional opening angles (due to residual stress) and stiffness of the embryonic chick brain during Hamburger–Hamilton stages 11–13 (approximately 42–51 h incubation). Opening angles resulting from a radial cut on transverse brain slices were about 40–110 deg (depending on region and stage) and served as an indicator of circumferential residual stress. In addition, using a custom-made microindentation device and finite-element models, we determined regional indentation stiffness and material properties. The results indicate that the modulus is relatively independent of position and stage of development with the average shear modulus being about 220 Pa for stages 11–13 chick brains. Information on the regional material properties of the early embryonic brain will help illuminate the process of early brain morphogenesis.

1.
Desmond
,
M. E.
, and
Jacobson
,
A. G.
, 1977, “
Embryonic Brain Enlargement Requires Cerebrospinal Fluid Pressure
,”
Dev. Biol.
0012-1606,
57
, pp.
188
198
.
2.
Desmond
,
M. E.
, and
O’Rahilly
,
R.
, 1981, “
The Growth of the Human Brain During the Embryonic Period Proper
,”
Anat. Embryol. (Berl)
0340-2061,
162
, pp.
137
151
.
3.
Pacheco
,
M. A.
,
Marks
,
R. W.
,
Schoenwolf
,
G. C.
, and
Desmond
,
M. E.
, 1986, “
Quantification of the Initial Phases of Rapid Brain Enlargement in the Chick Embryo
,”
Am. J. Anat.
0002-9106,
175
, pp.
403
411
.
4.
Schoenwolf
,
G. C.
, and
Desmond
,
M. E.
, 1984, “
Neural Tube Occlusion Precedes Rapid Brain Enlargement
,”
J. Exp. Zool.
0022-104X,
230
, pp.
405
407
.
5.
Hamburger
,
V.
, and
Hamilton
,
H. L.
, 1951, “
A Series of Normal Stages in the Development of the Chick Embryo
,”
J. Morphol.
0362-2525,
88
, pp.
49
92
.
6.
Desmond
,
M. E.
,
Levitan
,
M. L.
, and
Haas
,
A. R.
, 2005, “
Internal Luminal Pressure During Early Chick Embryonic Brain Growth: Descriptive and Empirical Observations
,”
Anat. Rec.
0003-276X,
285A
, pp.
737
747
.
7.
Jelínek
,
R.
, and
Pexiedner
,
T.
, 1968, “
The Pressure of Encephalic Fluid in Chick Embryos Between the 2nd and 6th Day of Incubation
,”
Physiol. Bohemoslov.
0369-9463,
17
, pp.
297
305
.
8.
Desmond
,
M. E.
, and
Levitan
,
M. L.
, 2002, “
Brain Expansion in the Chick Embryo Initiated by Experimentally Produced Occlusion of the Spinal Neurocoel
,”
Anat. Rec.
0003-276X,
268
, pp.
147
159
.
9.
Gilbert
,
S. F.
, 2006,
Developmental Biology
,
8
th ed.,
Sinauer Associates, Inc.
,
Sunderland, MA
.
10.
Wozniak
,
M. A.
, and
Chen
,
C. S.
, 2009, “
Mechanotransduction in Development: A Growing Role for Contractility
,”
Nat. Rev. Mol. Cell Biol.
1471-0072,
10
, pp.
34
43
.
11.
Voronov
,
D. A.
, and
Taber
,
L. A.
, 2002, “
Cardiac Looping in Experimental Conditions: Effects of Extraembryonic Forces
,”
Dev. Dyn.
1058-8388,
224
, pp.
413
421
.
12.
Zamir
,
E. A.
,
Srinivasan
,
V.
,
Perucchio
,
R.
, and
Taber
,
L. A.
, 2003, “
Mechanical Asymmetry in the Embryonic Chick Heart During Looping
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1327
1336
.
13.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
, pp.
455
467
.
14.
Taber
,
L.
, 2008, “
Theoretical Study of Beloussov’s Hyper-Restoration Hypothesis for Mechanical Regulation of Morphogenesis
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
427
441
.
15.
Taber
,
L. A.
, and
Perucchio
,
R.
, 2000, “
Modeling Heart Development
,”
J. Elast.
0374-3535,
61
, pp.
165
197
.
16.
Zamir
,
E. A.
, and
Taber
,
L. A.
, 2004, “
On the Effects of Residual Stress in Microindentation Tests of Soft Tissue Structures
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
276
283
.
17.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1989, “
Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
0009-7330,
65
, pp.
1340
1349
.
18.
Zamir
,
E. A.
, and
Taber
,
L. A.
, 2004, “
Material Properties and Residual Stress in the Stage 12 Chick Heart during Cardiac Looping
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
823
830
.
19.
Gefen
,
A.
,
Gefen
,
N.
,
Zhu
,
Q. L.
,
Raghupathi
,
R.
, and
Margulies
,
S. S.
, 2003, “
Age-Dependent Changes in Material Properties of the Brain and Braincase of the Rat
,”
J. Neurotrauma
0897-7151,
20
, pp.
1163
1177
.
20.
Georges
,
P. C.
,
Miller
,
W. J.
,
Meaney
,
D. F.
,
Sawyer
,
E. S.
, and
Janmey
,
P. A.
, 2006, “
Matrices With Compliance Comparable to That of Brain Tissue Select Neuronal Over Glial Growth in Mixed Cortical Cultures
,”
Biophys. J.
0006-3495,
90
, pp.
3012
3018
.
21.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
244
252
.
22.
Thibault
,
K. L.
, and
Margulies
,
S. S.
, 1998, “
Age-Dependent Material Properties of the Porcine Cerebrum: Effect on Pediatric Inertial Head Injury Criteria
,”
J. Biomech.
0021-9290,
31
, pp.
1119
1126
.
23.
Kyriacou
,
S. K.
,
Mohamed
,
A.
,
Miller
,
K.
, and
Neff
,
S.
, 2002, “
Brain Mechanics for Neurosurgery: Modeling Issues
,”
Biomech. Model. Mechanobiol.
1617-7959,
1
, pp.
151
164
.
24.
Hrapko
,
M.
,
van Dommelen
,
J. A. W.
,
Peters
,
G. W. M.
, and
Wismans
,
J. S. H.
, 2008, “
The Influence of Test Conditions on Characterization of the Mechanical Properties of Brain Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
031003
.
25.
Fung
,
Y. C.
, 1998,
Biomechanics: Motion, Flow, Stress, and Growth
,
2nd ed.
,
Springer
,
New York
.
26.
Sharp
,
D. J.
,
Rogers
,
G. C.
, and
Scholey
,
J. M.
, 2000, “
Microtubule Motors in Mitosis
,”
Nature (London)
0028-0836,
407
, pp.
41
47
.
You do not currently have access to this content.