The lack of accuracy in the prediction of vertebral fracture risk from average density measurements, all external factors being equal, may not just be because bone mineral density (BMD) is less than a perfect surrogate for bone strength but also because strength alone may not be sufficient to fully characterize the structural failure of a vertebra. Apart from bone quantity, the regional variation of cancellous architecture would have a role in governing the mechanical properties of vertebrae. In this study, we estimated various microstructural parameters of the vertebral cancellous centrum based on stereological analysis. An earlier study indicated that within-vertebra variability, measured as the coefficient of variation (COV) of bone volume fraction (BV/TV) or as COV of finite element-estimated apparent modulus (EFE) correlated well with vertebral strength. Therefore, as an extension to our earlier study, we investigated (i) whether the relationships of vertebral strength found with COV of BV/TV and COV of EFE could be extended to the COV of other microstructural parameters and microcomputed tomography-estimated BMD and (ii) whether COV of microstructural parameters were associated with structural ductility measures. COV-based measures were more strongly associated with vertebral strength and ductility measures than average microstructural measures. Moreover, our results support a hypothesis that decreased microstructural variability, while associated with increased strength, may result in decreased structural toughness and ductility. The current findings suggest that variability-based measures could provide an improvement, as a supplement to clinical BMD, in screening for fracture risk through an improved prediction of bone strength and ductility. Further understanding of the biological mechanisms underlying microstructural variability may help develop new treatment strategies for improved structural ductility.

1.
Cranney
,
A.
,
Jamal
,
S. A.
,
Tsang
,
J. F.
,
Josse
,
R. G.
, and
Leslie
,
W. D.
, 2007, “
Low Bone Mineral Density and Fracture Burden in Postmenopausal Women
,”
CMAJ
0820-3946,
177
(
6
), pp.
575
580
.
2.
Ortoft
,
G.
,
Mosekilde
,
L.
,
Hasling
,
C.
, and
Mosekilde
,
L.
, 1993, “
Estimation of Vertebral Body Strength by Dual Photon Absorptiometry in Elderly Individuals: Comparison Between Measurements of Total Vertebral and Vertebral Body Bone Mineral
,”
Bone (N.Y.)
8756-3282,
14
(
4
), pp.
667
673
.
3.
Mcbroom
,
R. J.
,
Hayes
,
W. C.
,
Edwards
,
W. T.
,
Goldberg
,
R. P.
, and
White
,
A. A.
, III
, 1985, “
Prediction of Vertebral Body Compressive Fracture Using Quantitative Computed Tomography
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
67
(
8
), pp.
1206
1214
.
4.
Mccubbrey
,
D. A.
,
Cody
,
D. D.
,
Peterson
,
E. L.
,
Kuhn
,
J. L.
,
Flynn
,
M. J.
, and
Goldstein
,
S. A.
, 1995, “
Static and Fatigue Failure Properties of Thoracic and Lumbar Vertebral Bodies and Their Relation to Regional Density
,”
J. Biomech.
0021-9290,
28
(
8
), pp.
891
899
.
5.
Hudelmaier
,
M.
,
Kollstedt
,
A.
,
Lochmuller
,
E. M.
,
Kuhn
,
V.
,
Eckstein
,
F.
, and
Link
,
T. M.
, 2005, “
Gender Differences in Trabecular Bone Architecture of the Distal Radius Assessed With Magnetic Resonance Imaging and Implications for Mechanical Competence
,”
Osteoporosis Int.
0937-941X,
16
(
9
), pp.
1124
1133
.
6.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
, 1997, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
0362-2436,
22
(
2
), pp.
140
150
.
7.
Banse
,
X.
,
Devogelaer
,
J. P.
,
Munting
,
E.
,
Delloye
,
C.
,
Cornu
,
O.
, and
Grynpas
,
M.
, 2001, “
Inhomogeneity of Human Vertebral Cancellous Bone: Systematic Density and Structure Patterns Inside the Vertebral Body
,”
Bone (N.Y.)
8756-3282,
28
(
5
), pp.
563
571
.
8.
Hulme
,
P. A.
,
Boyd
,
S. K.
, and
Ferguson
,
S. J.
, 2007, “
Regional Variation in Vertebral Bone Morphology and Its Contribution to Vertebral Fracture Strength
,”
Bone (N.Y.)
8756-3282,
41
(
6
), pp.
946
957
.
9.
Cody
,
D. D.
,
Goldstein
,
S. A.
,
Flynn
,
M. J.
, and
Brown
,
E. B.
, 1991, “
Correlations Between Vertebral Regional Bone Mineral Density (Rbmd) and Whole Bone Fracture Load
,”
Spine
0362-2436,
16
(
2
), pp.
146
154
.
10.
Kim
,
D. G.
,
Hunt
,
C. A.
,
Zauel
,
R.
,
Fyhrie
,
D. P.
, and
Yeni
,
Y. N.
, 2007, “
The Effect of Regional Variations of the Trabecular Bone Properties on the Compressive Strength of Human Vertebral Bodies
,”
Ann. Biomed. Eng.
0090-6964,
35
(
11
), pp.
1907
1913
.
11.
Kim
,
D. G.
,
Christopherson
,
G. T.
,
Dong
,
X. N.
,
Fyhrie
,
D. P.
, and
Yeni
,
Y. N.
, 2004, “
The Effect of Microcomputed Tomography Scanning and Reconstruction Voxel Size on the Accuracy of Stereological Measurements in Human Cancellous Bone
,”
Bone (N.Y.)
8756-3282,
35
(
6
), pp.
1375
1382
.
12.
Goulet
,
R. W.
,
Goldstein
,
S. A.
,
Ciarelli
,
M. J.
,
Kuhn
,
J. L.
,
Brown
,
M. B.
, and
Feldkamp
,
L. A.
, 1994, “
The Relationship Between the Structural and Orthogonal Compressive Properties of Trabecular Bone
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
375
389
.
13.
Laib
,
A.
, and
Ruegsegger
,
P.
, 1999, “
Calibration of Trabecular Bone Structure Measurements of In Vivo Three-Dimensional Peripheral Quantitative Computed Tomography With 28-Microm-Resolution Microcomputed Tomography
,”
Bone (N.Y.)
8756-3282,
24
(
1
), pp.
35
39
.
14.
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
, 1999, “
On Equivalence Between Stress Criterion and Stiffness Criterion in Evolutionary Structural Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
18
(
1
), pp.
67
73
.
15.
Brown
,
T. D.
, and
Ferguson
,
A. B.
, Jr.
, 1980, “
Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur
,”
Acta Orthop. Scand.
0001-6470,
51
(
3
), pp.
429
437
.
16.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Ford
,
C. M.
, and
Hayes
,
W. C.
, 1994, “
Differences Between the Tensile and Compressive Strengths of Bovine Tibial Trabecular Bone Depend on Modulus
,”
J. Biomech.
0021-9290,
27
(
9
), pp.
1137
1146
.
17.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
, 1998, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
0021-9290,
31
(
11
), pp.
1009
1015
.
18.
Fyhrie
,
D. P.
, and
Vashishth
,
D.
, 2000, “
Bone Stiffness Predicts Strength Similarly for Human Vertebral Cancellous Bone in Compression and for Cortical Bone in Tension
,”
Bone (N.Y.)
8756-3282,
26
(
2
), pp.
169
173
.
19.
Yeni
,
Y. N.
,
Dong
,
X. N.
,
Fyhrie
,
D. P.
, and
Les
,
C. M.
, 2004, “
The Dependence Between the Strength and Stiffness of Cancellous and Cortical Bone Tissue for Tension and Compression: Extension of a Unifying Principle
,”
Biomed. Mater. Eng.
0959-2989,
14
(
3
), pp.
303
310
.
20.
Silva
,
M. J.
, and
Gibson
,
L. J.
, 1997, “
Modeling the Mechanical Behavior of Vertebral Trabecular Bone: Effects of Age-Related Changes in Microstructure
,”
Bone (N.Y.)
8756-3282,
21
(
2
), pp.
191
199
.
21.
Yeni
,
Y. N.
,
Kim
,
D. G.
,
Divine
,
G. W.
,
Johnson
,
E. M.
, and
Cody
,
D. D.
, 2009, “
Human Cancellous Bone From T12-L1 Vertebrae Has Unique Microstructural and Trabecular Shear Stress Properties
,”
Bone (N.Y.)
8756-3282,
44
(
1
), pp.
130
136
.
22.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Models Predict In Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone (N.Y.)
8756-3282,
33
(
4
), pp.
744
750
.
23.
Shen
,
W.
,
Niu
,
Y.
,
Mattrey
,
R. F.
,
Fournier
,
A.
,
Corbeil
,
J.
,
Kono
,
Y.
, and
Stuhmiller
,
J. H.
, 2008, “
Development and Validation of Subject-Specific Finite Element Models for Blunt Trauma Study
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
2
), p.
021022
.
24.
Kim
,
D. G.
,
Dong
,
X. N.
,
Cao
,
T.
,
Baker
,
K. C.
,
Shaffer
,
R. R.
,
Fyhrie
,
D. P.
, and
Yeni
,
Y. N.
, 2006, “
Evaluation of Filler Materials Used for Uniform Load Distribution at Boundaries During Structural Biomechanical Testing of Whole Vertebrae
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
161
165
.
25.
Yeni
,
Y. N.
,
Shaffer
,
R. R.
,
Baker
,
K. C.
,
Dong
,
X. N.
,
Grimm
,
M. J.
,
Les
,
C. M.
, and
Fyhrie
,
D. P.
, 2007, “
The Effect of Yield Damage on the Viscoelastic Properties of Cortical Bone Tissue as Measured by Dynamic Mechanical Analysis
,”
J. Biomed. Mater. Res. Part A
1549-3296,
82A
(
3
), pp.
530
537
.
26.
Seifert
,
A.
, and
Flynn
,
M. J.
, 2002, “
Resolving Power of 3D X-Ray Microtomography Systems
,”
Proc. SPIE
0277-786X,
4682
, pp.
407
413
.
27.
Samei
,
E.
,
Badano
,
A.
,
Chakraborty
,
D.
,
Compton
,
K.
,
Cornelius
,
C.
,
Corrigan
,
K.
,
Flynn
,
M. J.
,
Hemminger
,
B.
,
Hangiandreou
,
N.
,
Johnson
,
J.
,
Moxley-Stevens
,
D. M.
,
Pavlicek
,
W.
,
Roehrig
,
H.
,
Rutz
,
L.
,
Shepard
,
J.
,
Uzenoff
,
R. A.
,
Wang
,
J.
, and
Willis
,
C. E.
, 2005, “
Assessment of Display Performance for Medical Imaging Systems: Executive Summary of Aapm Tg18 Report
,”
Med. Phys.
0094-2405,
32
(
4
), pp.
1205
1225
.
28.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties, Solid State Science Series
,
Cambridge University Press
,
Cambridge
.
29.
Nazarian
,
A.
,
Stauber
,
M.
,
Zurakowski
,
D.
,
Snyder
,
B. D.
, and
Muller
,
R.
, 2006, “
The Interaction of Microstructure and Volume Fraction in Predicting Failure in Cancellous Bone
,”
Bone (N.Y.)
8756-3282,
39
(
6
), pp.
1196
1202
.
30.
Kelly
,
A.
, and
Macmillan
,
N. H.
, 1986,
Strong Solids
,
Clarendon
,
Oxford
.
31.
Lindsey
,
D. P.
,
Kim
,
M. J.
,
Hannibal
,
M.
, and
Alamin
,
T. F.
, 2005, “
The Monotonic and Fatigue Properties of Osteoporotic Thoracic Vertebral Bodies
,”
Spine
0362-2436,
30
(
6
), pp.
645
649
.
32.
Lespessailles
,
E.
,
Chappard
,
C.
,
Bonnet
,
N.
, and
Benhamou
,
C. L.
, 2006, “
Imaging Techniques for Evaluating Bone Microarchitecture
,”
Jt., Bone Spine
1297-319X,
73
(
3
), pp.
254
261
.
33.
Chappard
,
C.
,
Brunet-Imbault
,
B.
,
Lemineur
,
G.
,
Giraudeau
,
B.
,
Basillais
,
A.
,
Harba
,
R.
, and
Benhamou
,
C. L.
, 2005, “
Anisotropy Changes in Post-Menopausal Osteoporosis: Characterization by a New Index Applied to Trabecular Bone Radiographic Images
,”
Osteoporosis Int.
0937-941X,
16
(
10
), pp.
1193
1202
.
34.
Wolbarst
,
A. B.
, and
Hendee
,
W. R.
, 2006, “
Evolving and Experimental Technologies in Medical Imaging
,”
Radiology
0033-8419,
238
(
1
), pp.
16
39
.
35.
Homminga
,
J.
,
Van-Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
, 2004, “
The Osteoporotic Vertebral Structure Is Well Adapted to the Loads of Daily Life, But Not to Infrequent “Error” Loads
,”
Bone (N.Y.)
8756-3282,
34
(
3
), pp.
510
516
.
36.
Van Der Linden
,
J. C.
,
Day
,
J. S.
,
Verhaar
,
J. A.
, and
Weinans
,
H.
, 2004, “
Altered Tissue Properties Induce Changes in Cancellous Bone Architecture in Aging and Diseases
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
367
374
.
You do not currently have access to this content.