Rupture of an intracranial aneurysm (IA) is frequently associated with intense physical exertion and/or emotional excitement, events that are typically also accompanied by sudden significant changes in both heart rate and blood pressure. Very few experimental studies of aneurysm hemodynamics have examined the impact on hemodynamic parameters in and around an aneurysm resulting from changes in heart rate. In order to further understanding these changes, as they relate to hemodynamic features that may contribute to rupture of an IA, we examined the characteristics of pulsatile flow in and around two “patient-specific” intracranial aneurysms at three different cardiac frequencies. Three dimensional X-ray angiographic data (3D-DSA) were used to reconstruct accurate and patient-specific aneurysm geometries. Then, computational fluid dynamics techniques were utilized to analyze the characteristics of blood flow in and around the two aneurysms. Physiologically realistic flow conditions, as measured by transcranial Doppler ultrasound, were used in the simulations. Our results showed that there were significant changes in the overall flow patterns (e.g., vortex formation and translation) associated with the changes of heart rates. In both aneurysms, the calculated wall shear stress exhibited substantial increases with an increase in heart rate. Our results suggest that the changes in local hemodynamic forces associated with variations in heart rate are dependent not only on the heart rate but also on the aneurysm geometry. This thus precludes applying our observations about the impact of variations in cardiac rate to aneurysms in general.

1.
Rinkel
,
G. J.
,
Djibuti
,
M.
,
Algra
,
A.
, and
Van Gijn
,
J.
, 1998, “
Prevalence and Risk of Rupture of Intracranial Aneurysms: A Systematic Review
,”
Stroke
0039-2499,
29
(
1
), pp.
251
256
.
2.
Schievink
,
W. I.
, 1997, “
Intracranial Aneurysms
,”
N. Engl. J. Med.
0028-4793,
336
(
1
), pp.
28
40
.
3.
Mayberg
,
M. R.
,
Batjer
,
H. H.
,
Dacey
,
R.
,
Diringer
,
M.
,
Haley
,
E. C.
,
Heros
,
R. C.
,
Sternau
,
L. L.
,
Torner
,
J.
,
Adams
,
H. P.
, Jr.
,
Feinberg
,
W.
, and
Thies
,
W.
, 1994, “
Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage. A Statement for Healthcare Professionals From a Special Writing Group of the Stroke Council, American Heart Association
,”
Stroke
0039-2499,
25
(
11
), pp.
2315
2328
.
4.
Brisman
,
J. L.
,
Song
,
J. K.
, and
Newell
,
D. W.
, 2006, “
Cerebral Aneurysms
,”
N. Engl. J. Med.
0028-4793,
355
(
9
), pp.
928
939
.
5.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
, 2009, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
0066-4189,
41
(
1
), pp.
91
107
.
6.
Serway
,
R. A.
, and
Jewett
,
J. W.
, 2004,
Physics for Scientists and Engineers
,
Thomson-Brooks/Cole
,
Belmont, CA
, p.
253
.
7.
Gobin
,
Y. P.
,
Counord
,
J. L.
,
Flaud
,
P.
, and
Duffaux
,
J.
, 1994, “
In Vitro Study of Haemodynamics in a Giant Saccular Aneurysm Model: Influence of Flow Dynamics in the Parent Vessel and Effects of Coil Embolisation
,”
Neuroradiology
0028-3940,
36
(
7
), pp.
530
536
.
8.
Liou
,
T. M.
,
Chang
,
W. C.
, and
Liao
,
C. C.
, 1997, “
Experimental Study of Steady and Pulsatile Flows in Cerebral Aneurysm Model of Various Sizes at Branching Site
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
3
), pp.
325
332
.
9.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chung
,
C.
,
Chan
,
R. C.
, and
Kamm
,
R. D.
, 2003, “
Computational Analysis of the Effects of Exercise on Hemodynamics in the Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
8
), pp.
995
1006
.
10.
Steinman
,
D. A.
,
Milner
,
J. S.
,
Norley
,
C. J.
,
Lownie
,
S. P.
, and
Holdsworth
,
D. W.
, 2003, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
(
4
), pp.
559
566
.
11.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
, 2005, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
(
10
), pp.
2550
2559
.
12.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
, 2002,
Digital Image Processing
,
Prentice-Hall
,
Upper Saddle River, NJ
.
13.
Simpleware, Inc.
, 2007, User’s Manual for Scanip+Scanfe+Scancad.
14.
Heckmann
,
J. G.
,
Hilz
,
M. J.
,
Muck-Weymann
,
M.
, and
Neundorfer
,
B.
, 2000, “
Transcranial Doppler Sonography-Ergometer Test for the Non-Invasive Assessment of Cerebrovascular Autoregulation in Humans
,”
J. Neurol. Sci.
0022-510X,
177
(
1
), pp.
41
417
.
15.
Ogoh
,
S.
,
Fadel
,
P. J.
,
Zhang
,
R.
,
Selmer
,
C.
,
Jans
,
O.
,
Secher
,
N. H.
, and
Raven
,
P. B.
, 2005, “
Middle Cerebral Artery Flow Velocity and Pulse Pressure During Dynamic Exercise in Humans
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
4
), pp.
H1526
H1531
.
16.
Zhao
,
M.
,
Amin-Hanjani
,
S.
,
Ruland
,
S.
,
Curcio
,
A. P.
,
Ostergren
,
L.
, and
Charbel
,
F. T.
, 2007, “
Regional Cerebral Blood Flow Using Quantitative MR Angiography
,”
AJNR Am. J. Neuroradiol.
0195-6108,
28
(
8
), pp.
1470
1473
.
17.
Querido
,
J. S.
, and
Sheel
,
A. W.
, 2007, “
Regulation of Cerebral Blood Flow During Exercise
,”
Sports Med.
0112-1642,
37
(
9
), pp.
765
7802
.
18.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
164
.
19.
2006, FLUENT User’s Guide, Fluent Inc., Lebanon, NH.
20.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is it Reasonable to Assume Fully Developed Flow?
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
371
379
.
21.
Bernard
,
P. S.
, and
Wallace
,
J. M.
, 2002,
Turbulent Flow: Analysis, Measurement, and Prediction
,
Wiley
,
Hoboken, N.J
.
22.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
, 2008, “
Modeling Transition to Turbulence in Eccentric Stenotic Flows
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
1
), pp.
014503
7
.
23.
Meng
,
H.
,
Wang
,
Z.
,
Kim
,
M.
,
Ecker
,
R. D.
, and
Hopkins
,
L. N.
, 2006, “
Saccular Aneurysms on Straight and Curved Vessels Are Subject to Different Hemodynamics: Implications of Intravascular Stenting
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
(
9
), pp.
1861
1865
.
24.
Hoi
,
Y.
,
Meng
,
H.
,
Woodward
,
S. H.
,
Bendok
,
B. R.
,
Hanel
,
R. A.
,
Guterman
,
L. R.
, and
Hopkins
,
L. N.
, 2004, “
Effects of Arterial Geometry on Aneurysm Growth: Three-Dimensional Computational Fluid Dynamics Study
,”
J. Neurosurg.
0022-3085,
101
(
4
), pp.
676
681
.
25.
Robergs
,
R. A.
, and
Landwehr
,
R.
, 2002, “
The Surprising History of the “Hmax=220-Age” Equation
,”
Journal of Excise Physiology
,
5
, pp.
1
10
.
26.
Paulson
,
O. B.
,
Strandgaard
,
S.
, and
Edvinsson
,
L.
, 1990, “
Cerebral Autoregulation
,”
Cerebrovasc. Brain Metab. Rev.
,
2
(
2
), pp.
161
192
. 1040-8827
27.
Peacock
,
J.
,
Jones
,
T.
,
Tock
,
C.
, and
Rutz
,
R.
, 1998, “
The Onset of Turbulence in Physiological Pusatile Flow in a Straight Tube
,”
Exp. Fluids
0723-4864,
24
, pp.
1
9
.
28.
Scott
,
S.
,
Ferguson
,
G. G.
, and
Roach
,
M. R.
, 1972, “
Comparison of the Elastic Properties of Human Intracranial Arteries and Aneurysms
,”
Can. J. Physiol. Pharmacol.
0008-4212,
50
(
4
), pp.
328
332
.
29.
Macdonald
,
D. J.
,
Finlay
,
H. M.
, and
Canham
,
P. B.
, 2000, “
Directional Wall Strength in Saccular Brain Aneurysms From Polarized Light Microscopy
,”
Ann. Biomed. Eng.
0090-6964,
28
(
5
), pp.
533
42
.
30.
Toth
,
M.
,
Nadasy
,
G. L.
,
Nyary
,
I.
,
Kerenyi
,
T.
,
Orosz
,
M.
,
Molnarka
,
G.
, and
Monos
,
E.
, 1998, “
Sterically Inhomogenous Viscoelastic Behavior of Human Saccular Cerebral Aneurysms
,”
J. Vasc. Res.
1018-1172,
35
(
5
), pp.
345
355
.
31.
Meyer
,
F. B.
,
Huston
,
J.
, III
, and
Riederer
,
S. S.
, 1993, “
Pulsatile Increases in Aneurysm Size Determined by Cine Phase-Contrast MR Angiography
,”
J. Neurosurg.
0022-3085,
78
(
6
), pp.
879
883
.
32.
Mills
,
C. J.
,
Gabe
,
I. T.
,
Gault
,
J. H.
,
Mason
,
D. T.
,
Ross
,
J.
, Jr.
,
Braunwald
,
E.
, and
Shillingford
,
J. P.
, 1970, “
Pressure-Flow Relationships and Vascular Impedance in Man
,”
Cardiovasc. Res.
0008-6363,
4
(
4
), pp.
405
417
.
33.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
Demont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
, 2008, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
2
), pp.
021015
.
34.
Austin
,
G. M.
,
Schievink
,
W.
, and
Williams
,
R.
, 1989, “
Controlled Pressure-Volume Factors in the Enlargement of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
24
(
5
), pp.
722
730
.
35.
Chien
,
S.
, 2007, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
292
(
3
), pp.
H1209
H1224
.
36.
Valencia
,
A.
, and
Francisco
,
S.
, 2006, “
Blood Flow Dynamics and Arterial Wall Interaction in a Saccular Aneurysm Model of the Basilar Artery
,”
Comput. Struct.
0045-7949,
84
(
21
), pp.
1326
1337
.
37.
De Korte
,
C. L.
,
Pasterkamp
,
G.
,
Van Der Steen
,
A. F. W.
,
Woutman
,
H. A.
, and
Bom
,
N.
, 2000, “
Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro
,”
Circulation
0009-7322,
102
(
6
), pp.
617
623
.
38.
Hellstrom
,
G.
,
Fischer-Colbrie
,
W.
,
Wahlgren
,
N. G.
, and
Jogestrand
,
T.
, 1996, “
Carotid Artery Blood Flow and Middle Cerebral Artery Blood Flow Velocity During Physical Exercise
,”
J. Appl. Physiol.
8750-7587,
81
(
1
), pp.
413
418
.
39.
Ozek
,
E.
,
Koroglu
,
T. F.
,
Karakoc
,
F.
,
Kihc
,
T.
,
Tangoren
,
M.
,
Pamir
,
N.
,
Basaran
,
M.
, and
Bekiroglu
,
N.
, 1995, “
Transcranial Doppler Assessment of Cerebral Blood Flow Velocity in Term Newborns
,”
Eur. J. Pediatr.
0340-6199,
154
(
1
), pp.
60
63
.
40.
Katz
,
M. L.
, and
Alexandrov
,
A. V.
, 2003,
A Practical Guide to Transcranial Doppler Examinations
,
Summer
,
Littleton
.
You do not currently have access to this content.