Ultrasonic elasticity imaging enables visualization of soft tissue deformation for medical diagnosis. Our aim is to understand the role of flow-dependent and flow-independent viscoelastic mechanisms in the response of biphasic polymeric media, including biological tissues and hydrogels, to low-frequency forces. Combining the results of confined and unconfined compression experiments on gelatin hydrogels with finite element analysis (FEA) simulations of the experiments, we explore the role of polymer structure, loading, and boundary conditions in generating contrast for viscoelastic features. Feature estimation is based on comparisons between the biphasic poro-elastic and biphasic poro-viscoelastic (BPVE) material models, where the latter adds the viscoelastic response of the solid polymer matrix. The approach is to develop a consistent FEA material model (BPVE) from confined compression-stress relaxation measurements to extract the strain dependent hydraulic permeability variation and cone-plate rheometer measurements to obtain the flow-independent viscoelastic constants for the solid-matrix phase. The model is then applied to simulate the unconfined compression experiment to explore the mechanics of hydropolymers under conditions of quasi-static elasticity imaging. The spatiotemporal distributions of fluid and solid-matrix behavior within the hydrogel are studied to propose explanations for strain patterns that arise during the elasticity imaging of heterogeneous media.

1.
Garra
,
B. S.
, 2007, “
Imaging and Estimation of Tissue Elasticity by Ultrasound
,”
Ultrasound Quarterly
,
23
, pp.
255
268
. 0894-8771
2.
Itoh
,
A.
,
Ueno
,
E.
,
Tohno
,
E.
,
Kamma
,
H.
,
Takahashi
,
H.
,
Shiina
,
T.
,
Yamakawa
,
M.
, and
Matsumura
,
T.
, 2006, “
Breast Disease: Clinical Application of US Elastography for Diagnosis
,”
Radiology
0033-8419,
239
, pp.
341
350
.
3.
Samani
,
A.
,
Zubovits
,
J.
, and
Plewes
,
D.
, 2007, “
Elastic Moduli of Normal and Pathological Human Breast Tissues: An Inversion-Technique-Based Investigation of 169 Samples
,”
Phys. Med. Biol.
0031-9155,
52
, pp.
1565
1576
.
4.
Qiu
,
Y.
,
Sridhar
,
M.
,
Tsou
,
J. K.
,
Lindfors
,
K. K.
, and
Insana
,
M. F.
, 2008, “
Ultrasonic Visco-elasticity Imaging of Nonpalpable Breast Tumors: Preliminary Results
,”
Acad. Radiol.
1076-6332,
15
, pp.
1526
1533
.
5.
Alowami
,
S.
,
Troup
,
S.
,
Al-Haddad
,
S.
,
Kirkpatrick
,
I.
, and
Watson
,
P. H.
, 2003, “
Mammographic Density Is Related to Stroma and Stromal Proteoglycan Expression
,”
Breast Cancer Res.
,
5
, pp.
R129
R135
. 1465-5411
6.
Sridhar
,
M.
, and
Insana
,
M. F.
, 2007, “
Ultrasonic Measurements of Breast Visco-elasticity
,”
Med. Phys.
0094-2405,
34
, pp.
4757
4767
.
7.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
8.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
165
173
.
9.
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1978, “
A Biphasic Rheological Model of Articular Cartilage
,”
Adv. Bioeng.
0360-9960,
A. H.
Burstein
, ed.,
ASME
, New York, pp.
17
18
.
10.
Mak
,
A. F.
, 1986, “
The Apparent Visco-elastic Behavior of Articular Cartilage: The Contributions for the Intrinsic Matrix Visco-elasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
123
130
.
11.
Mak
,
A. F.
, 1986, “
Unconfined Compression of Hydrated Visco-elastic Tissues: A Biphasic Poroviscoelastic Analysis
,”
Biorheology
0006-355X,
23
, pp.
371
383
.
12.
DiSilvestro
,
M. R.
, and
Francis Suh
,
J. K.
, 2001, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
0021-9290,
34
, pp.
519
525
.
13.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
, pp.
155
164
.
14.
von Terzaghi
,
K.
, 1951,
Theoretical Soil Mechanics
,
Wiley
,
New York
.
15.
Tolstoy
,
I.
, 1992,
Acoustics, Elasticity, and Thermodynamics of Porous Media: Twenty-One Papers by M.A. Biot
,
Acoustical Society of America
,
Woodbury, NY
.
16.
Berry
,
G. P.
,
Bamber
,
J. C.
,
Miller
,
N. R.
,
Barbone
,
P. E.
,
Bush
,
N. L.
, and
Armstrong
,
C. G.
, 2006, “
Towards an Acoustic Model-Based Poro-elastic Imaging Method: II. Experimental Investigation
,”
Ultrasound Med. Biol.
0301-5629,
32
, pp.
1869
1885
.
17.
Mansour
,
J. M.
, and
Mow
,
V. C.
, 1976, “
The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
58
, pp.
509
516
.
18.
Lai
,
W. M.
, and
Mow
,
V. C.
, 1980, “
Drag Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
0006-355X,
103
, pp.
111
123
.
19.
Mow
,
V. C.
, and
Lai
,
W. M.
, 1980, “
Recent Developments in Synovial Joint Biomechanics
,”
SIAM Rev.
0036-1445,
22
, pp.
275
317
.
20.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
, 1981, “
Effects of Nonlinear Strain Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
61
66
.
21.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1985, “
Permeability of Soft Hydrated Tissues Under Finite Deformation
,”
Biomech. Symp.,
,
D. L.
Butler
, ed.,
Trans. ASME
, New York, AMD Vol.
68
, FED Vol. 21, pp.
79
80
.
22.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1990, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I: Equilibrium Results
,”
J. Biomech.
0021-9290,
23
, pp.
145
155
.
23.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
, pp.
1145
1156
.
24.
Suh
,
J. K.
,
Spilker
,
R. L.
, and
Holmes
,
M. H.
, 1991, “
A Penalty Finite-Element Analysis for Nonlinear Mechanics of Biphasic Hydrated Soft-Tissue Under Large Deformation
,”
Intl. J. Numer. Methods Eng.
,
32
, pp.
1411
1439
.
25.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
, 1996, “
Poro-elastic Creep Response of a Lumbar Motion Segment in Compression
,”
J. Biomech.
0021-9290,
29
, pp.
1331
1339
.
26.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
, 1997, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
0021-9290,
30
, pp.
1157
1164
.
27.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poro-elastic Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
, pp.
673
682
.
28.
Mow
,
V. C.
, and
Ratcliffe
,
A.
, 1997, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics
,
2nd ed.
,
V. C.
Mow
and
W. C.
Hayes
, eds.,
Lippincott-Raven
,
Philadelphia
, pp.
113
177
.
29.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 1998, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
0021-9290,
31
, pp.
927
934
.
30.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
576
586
.
31.
Berry
,
G. P.
,
Bamber
,
J. C.
,
Armstrong
,
C. G.
,
Miller
,
N. R.
, and
Barbone
,
P. E.
, 2006, “
Towards an Acoustic Model-Based Poro-elastic Imaging Method: I. Theoretical Foundation
,”
Ultrasound Med. Biol.
0301-5629,
32
, pp.
547
567
.
32.
Leiderman
,
R.
,
Barbone
,
P. E.
,
Oberai
,
A. A.
, and
Bamber
,
J. C.
, 2006, “
Coupling Between Elastic Strain and Interstitial Fluid Flow: Ramifications for Poro-elastic Imaging
,”
Phys. Med. Biol.
0031-9155,
51
, pp.
6291
6313
.
33.
Brown
,
T. D.
, and
Singerman
,
R. J.
, 1986, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
0021-9290,
19
, pp.
597
605
.
34.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
491
496
.
35.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
198
200
.
36.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Francis Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
191
197
.
37.
Hayes
,
W. C.
, and
Bodine
,
A. J.
, 1978, “
Flow-Independent Visco-elastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
0021-9290,
11
, pp.
407
419
.
38.
Viidick
,
A.
, 1968, “
A Rheological Model for Uncalcified Parallel-Fibered Collagenous Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
90
, pp.
3
11
.
39.
Mow
,
V. C.
,
Mak
,
A. F.
,
Lai
,
W. M.
,
Rosenberg
,
L. C.
, and
Tang
,
L. H.
, 1984, “
Visco-elastic Properties of Proteoglycan Subunits and Aggregates in Varying Solution Concentrations
,”
J. Biomech.
0021-9290,
17
, pp.
325
338
.
40.
Zhu
,
W.
, and
Mow
,
V. C.
, 1990, “
Viscometric Properties of Proteoglycan Solutions at Physiological Concentration
,”
Biomechanics of Diathrodial Joints
,
Springer-Verlag
,
New York
, pp.
313
344
.
41.
Yakimets
,
I.
,
Wellner
,
N.
,
Smith
,
A.
,
Wilson
,
R.
,
Farhat
,
I.
, and
Mitchell
,
J.
, 2005, “
Mechanical Properties With Respect to Water Content of Gelatin Films in Glassy State
,”
Polymer
0032-3861,
46
, pp.
12577
12585
.
42.
Ferry
,
J. D.
, 1980,
Visco-elastic Properties of Polymers 3/e
,
Wiley
,
New York
.
43.
2007, ABAQUS manual, Version 6.7, Hibbit Karlson and Sorenson.
44.
Suh
,
J. K.
, and
DiSilvestro
,
M. R.
, 1999, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
528
0534
.
45.
Biot
,
M. A.
, 1962, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
0021-8979,
33
, pp.
1482
1498
.
46.
Suh
,
J. K.
, and
Bai
,
S.
, 1998, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
195
201
.
47.
Sridhar
,
M.
,
Liu
,
J.
, and
Insana
,
M. F.
, 2007, “
Elasticity Imaging of Polymeric Media
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
259
272
.
48.
Yapp
,
R. D.
,
Kalyanam
,
S.
, and
Insana
,
M. F.
, 2007, “
Molecular and Structural Analysis of Visco-elastic Behavior of Polymeric Media
,”
Proc. SPIE
0277-786X,
6511
, pp.
65111Y1
65111Y11
.
49.
Hall
,
T. J.
,
Bilgen
,
M.
,
Insana
,
M. F.
, and
Krouskop
,
T. A.
, 1997, “
Phantom Materials for Elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
44
, pp.
1355
1365
.
50.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer-Verlag
,
New York
.
51.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
52.
Buehler
,
M. J.
, and
Wong
,
S. T.
, 2007, “
Entropic Elasticity Controls Nanomechanics of Single Tropocollagen Molecules
,”
Biophys. J.
0006-3495,
93
, pp.
37
43
.
53.
Coussot
,
C.
,
Kalyanam
,
S.
,
Yapp
,
R. D.
, and
Insana
,
M. F.
, 2009, “
Fractional Derivative Models for Ultrasonic Characterization of Polymer and Breast Tissue Viscoelasticity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
56
, pp.
715
726
.
54.
Yapp
,
R. D.
, and
Insana
,
M. F.
, 2009, “
pH Induced Contrast in Viscoelasticity Imaging of Biopolymers
,”
Phys. Med. Biol.
0031-9155,
54
, pp.
1089
1109
.
55.
Sinkus
,
R.
,
Tanter
,
M.
,
Xydeas
,
T.
,
Catherine
,
S.
,
Berco
,
J.
, and
Fink
,
M.
, 2005, “
Visco-elastic Shear Properties of In Vivo Breast Lesions Measured by MR Elastography
,”
Magn. Reson. Imaging
0730-725X,
23
, pp.
159
165
.
56.
Fatemi
,
M.
, and
Greenleaf
,
J.
, 1998, “
Ultrasound Stimulated Vibro-Acoustic Spectrography
,”
Science
0036-8075,
280
, pp.
82
85
.
57.
Sharma
,
A.
,
Soo
,
M.
,
Trahey
,
G.
, and
Nightingale
,
K.
, 2004, “
Acoustic Radiation Force Impulse Imaging of In Vivo Breast Masses
,”
Proc.-IEEE Ultrason. Symp.
1051-0117,
1
, pp.
728
731
.
You do not currently have access to this content.