Mechanisms governing endothelial cell (EC) injury during arterial gas embolism have been investigated. Such mechanisms involve multiple scales. We have numerically investigated the macroscale flow dynamics due to the motion of a nearly occluding finite-sized air bubble in blood vessels of various sizes. Non-Newtonian behavior due to both the shear-thinning rheology of the blood and the Fahraeus–Lindqvist effect has been considered. The occluding bubble dynamics lends itself for an axisymmetric treatment. The numerical solutions have revealed several hydrodynamic features in the vicinity of the bubble. Large temporal and spatial shear stress gradients occur on the EC surface. The stress variations manifest in the form of a traveling wave. The gradients are accompanied by rapid sign changes. These features are ascribable to the development of a region of recirculation (vortex ring) in the proximity of the bubble. The shear stress gradients together with sign reversals may partially act as potential causes in the disruption of endothelial cell membrane integrity and functionality.

1.
Moon
,
R. E.
, 2005, “
Bubbles in the Brain: What to Do for Arterial Gas Embolism?
,”
Crit. Care Med.
0090-3493,
33
(
4
), pp.
909
910
.
2.
van Hulst
,
R. A.
,
Klein
,
J.
, and
Lachmann
,
B.
, 2003, “
Gas Embolism: Pathophysiology and Treatment
,”
Clin. Physiol. Funct. Imaging
,
23
(
5
), pp.
237
246
. 1475-0961
3.
Ghadiali
,
S.
, and
Gaver
,
D.
, 2008, “
Biomechanics of Liquid-Epithelium Interactions in Pulmonary Airways
,”
Respir. Physiol. Neurbiol.
1569-9048,
163
, pp.
232
243
.
4.
Yalcin
,
H.
,
Perry
,
S.
, and
Ghadiali
,
S.
, 2007, “
Influence of Airway Diameter and Cell Confluence on Epithelial Cell Injury in an In Vitro Model of Airway Reopening
,”
J. Appl. Physiol.
8750-7587,
103
, pp.
1796
1807
.
5.
Ghadiali
,
S.
, and
Gaver
,
D.
, III
, 2003, “
The Influence of Non-Equilibrium Surfactant Dynamics on the Flow of a Semi-Infinite Bubble in a Rigid Cylindrical Capillary Tube
,”
J. Fluid Mech.
0022-1120,
478
, pp.
165
196
.
6.
Ghadiali
,
S.
,
Banks
,
J.
, and
Swarts
,
J.
, 2004, “
Finite Element Analysis of Active Eustachian Tube Function
,”
J. Appl. Physiol.
8750-7587,
97
, pp.
648
654
.
7.
Cavanagh
,
D. P.
, and
Eckmann
,
D. M.
, 1999, “
Interfacial Dynamics of Stationary Gas Bubbles in Flows in Inclined Tubes
,”
J. Fluid Mech.
0022-1120,
398
, pp.
225
244
.
8.
Suzuki
,
A.
,
Armstead
,
S. C.
, and
Eckmann
,
D. M.
, 2004, “
Surfactant Reduction in Embolism Bubble Adhesion and Endothelial Damage
,”
Anesthesiology
0003-3022,
101
, pp.
97
103
.
9.
Eckmann
,
D. M.
, and
Lomivorotov
,
V. N.
, 2003, “
Microvascular Gas Embolization Clearance Following Perfluorocarbon Administration
,”
J. Appl. Physiol.
8750-7587,
94
, pp.
860
868
.
10.
Suzuki
,
A.
, and
Eckmann
,
D. M.
, 2003, “
Embolism Bubble Adhesion Force in Excised Perfused Microvessels
,”
Anesthesiology
0003-3022,
99
, pp.
400
408
.
11.
Zhang
,
J.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
, 2006, “
A Front Tracking Method for a Deformable Intravascular Bubble in a Tube With Soluble Surfactant Transport
,”
J. Comput. Phys.
0021-9991,
214
, pp.
366
396
.
12.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
, 2008, “
Finite-Sized Gas Bubble Motion in a Blood Vessel: Non-Newtonian Effects
,”
Phys. Rev. E
1063-651X,
78
, p.
036303
.
13.
Ayyaswamy
,
P. S.
, 2008, “
Introduction to Biofluid Mechanics
,”
Fluid Mechanics
,
4th ed.
,
P. K.
Kundu
and
I. M.
Cohen
,
Academic
,
Burlington, MA
, pp.
765
840
.
14.
Sharan
,
M.
, and
Popel
,
A. S.
, 2001, “
A Two-Phase Model for Blood Flow in Narrow Tubes With Increased Viscosity Near the Wall
,”
Biorheology
0006-355X,
38
, pp.
415
428
.
15.
Mukundakrishnan
,
K.
,
Quan
,
S.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
, 2007, “
Numerical Study of Wall Effects on Buoyant Gas-Bubble Rise in a Liquid-Filled Finite Cylinder
,”
Phys. Rev. E
1063-651X,
76
, p.
036308
.
16.
White
,
R. C.
, and
Frangos
,
J. A.
, 2007, “
The Shear Stress of It All: The Cell Membrane and Mechanochemical Transduction
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
362
, pp.
1459
1467
.
17.
Chien
,
S.
, 2008, “
Effects of Disturbed Flow on Endothelial Cells
,”
Ann. Biomed. Eng.
0090-6964,
36
(
4
), pp.
554
562
.
18.
Butler
,
P. J.
,
Norwich
,
G.
,
Weinbaum
,
S.
, and
Chien
,
S.
, 2001, “
Shear Stress Induces a Time- and Position-Dependent Increase in Endothelial Cell Membrane Fluidity
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
280
, pp.
C962
C969
.
19.
Haas
,
T.
, and
Duling
,
B.
, 1997, “
Morphology Favors an Endothelial Cell Pathway for Longitudinal Conduction Within Arterioles
,”
Microvasc. Res.
0026-2862,
53
, pp.
113
120
.
20.
Haidekker
,
M. A.
,
L’Heureux
,
N.
, and
Frangos
,
J. A.
, 2000, “
Fluid Shear Stress Increases Membrane Fluidity in Endothelial Cells: A Study With DCVJ Fluorescence
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
278
, pp.
H1401
H1406
.
21.
Huang
,
H.
,
Kamm
,
R.
, and
Lee
,
R.
, 2004, “
Cell Mechanics and Mechanotransduction: Pathways, Probes, and Physiology
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
287
, pp.
C1
C11
.
22.
Branger
,
A. B.
, and
Eckmann
,
D. M.
, 2002, “
Accelerated Arteriolar Gas Embolism Reabsorption by an Exogenous Surfactant
,”
Anesthesiology
0003-3022,
96
(
4
), pp.
971
979
.
23.
Davies
,
P. F.
,
Zilberberg
,
J.
, and
Helmke
,
B. P.
, 2003, “
Spatial Microstimuli in Endothelial Mechanosignaling
,”
Circ. Res.
0009-7330,
92
, pp.
359
370
.
You do not currently have access to this content.