The deformation of multiple red blood cells in a capillary flow was studied numerically. The immersed boundary method was used for the fluid red blood cells interaction. The membrane of the red blood cell was modeled as a hyperelastic thin shell. The numerical results show that the apparent viscosity in the capillary flow is more sensitive to the change of shear coefficient of the membrane than the bending coefficient and surface dilation coefficient, and the increase in the shear coefficient results in an increase in the pressure drop in the blood flow in capillary vessels in order to sustain the same flux rate of red blood cells.

1.
Boryczko
,
K.
,
Dzwinel
,
W.
, and
Yuen
,
D.
, 2003, “
Dynamical Clustering of Red Blood Cells in Capillary Vessels
,”
J. Mol. Model.
0948-5023,
9
, pp.
16
33
.
2.
Tanaka
,
M.
, and
Koshizuka
,
S.
, 2007, “
Simulation of Red Blood Cell Deformation Using a Particle Method
,”
Nagare
0286-3154,
26
, pp.
49
55
(in Japanese).
3.
Noguchi
,
H.
, and
Gompper
,
G.
, 2005, “
Shape Transitions of Fluid Vesicles and Red Blood Cells in Capillary Flows
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
40
), pp.
14159
14164
.
4.
Dupin
,
M.
,
Halliday
,
I.
,
Care
,
C.
,
Alboul
,
L.
,
Munn
,
L.
, 2007, “
Modeling the Flow of Dense Suspension of Deformable Particles in Three Dimensions
,”
Phys. Rev. E
1063-651X,
75
(
6
), p.
066707
.
5.
Lefebvre
,
A.
, and
Maury
,
B.
, 2005, “
Apparent Viscosity of a Mixture of a Newtonian Fluid and Interacting Particles
,”
C. R. Mec.
1631-0721,
333
(
12
), pp.
923
933
.
6.
Pozrikidis
,
C.
, 2005, “
Axisymmetric Motion of a File of Red Blood Cells Through Capillaries
,”
Phys. Fluids
1070-6631,
17
(
3
), p.
031503
.
7.
Bagchi
,
P.
, 2007, “
Mesoscale Simulation of Blood Flow in Small Vessels
,”
Biophys. J.
0006-3495,
92
(
6
), pp.
1858
1877
.
8.
Peskin
,
C.
, 1977, “
Numerical Analysis of Blood Flows in the Heart
,”
J. Comput. Phys.
0021-9991,
25
, pp.
220
252
.
9.
Unverdi
,
S.
, and
Tryggvason
,
G.
, 1992, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
, pp.
25
37
.
10.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.
, 2001, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991,
169
, pp.
708
759
.
11.
Pozrikidis
,
C.
, 2001, “
Effect of Membrane Bending Stiffness on the Deformation of Capsules in Simple Shear Flow
,”
J. Fluid Mech.
0022-1120,
440
, pp.
269
291
.
12.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
R.
, and
Chien
,
S.
, 1973, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
0006-3495,
13
, pp.
245
264
.
13.
Takagi
,
S.
,
Yamada
,
T.
,
Gong
,
X.
, and
Matsumoto
,
Y.
, 2009, “
The Deformation of a Vesicle in a Linear Shear Flow
,”
ASME J. Appl. Mech.
0021-8936,
76
(
2
), p.
021207
.
14.
Evans
,
E.
, and
Fung
,
Y.
, 1972, “
Improved Measurement of the Erythrocyte Geometry
,”
Microvasc. Res.
0026-2862,
4
, pp.
335
347
.
15.
Fischer
,
T.
, and
Schmid-Schonbein
,
H.
, 1977, “
Tank Tread Motion of Red Cell Membranes in Viscometric Flow: Behavior of Intracellular and Extracellular Markers
,”
Blood Cells
0340-4684,
3
, pp.
351
365
.
16.
Pozrikidis
,
C.
, 2003, “
Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1194
1205
.
17.
Chien
,
S.
,
Sung
,
L.
,
Lee
,
M.
, and
Skalak
,
R.
, 1992, “
Red Cell Membrane Elasticity as Dertermind by Flow Channel Technique
,”
Biorheology
0006-355X,
29
, pp.
467
478
.
18.
Chien
,
S.
,
Sung
,
L.
,
Skalak
,
R.
,
Usami
,
S.
, and
Tozeren
,
A.
, 1978, “
Theoretical and Experimental Studies on Viscoelastic Properties of Erythrocyte Membrane
,”
Biophys. J.
0006-3495,
24
, pp.
463
487
.
You do not currently have access to this content.