The deformation of multiple red blood cells in a capillary flow was studied numerically. The immersed boundary method was used for the fluid red blood cells interaction. The membrane of the red blood cell was modeled as a hyperelastic thin shell. The numerical results show that the apparent viscosity in the capillary flow is more sensitive to the change of shear coefficient of the membrane than the bending coefficient and surface dilation coefficient, and the increase in the shear coefficient results in an increase in the pressure drop in the blood flow in capillary vessels in order to sustain the same flux rate of red blood cells.
Issue Section:
Technical Briefs
1.
Boryczko
, K.
, Dzwinel
, W.
, and Yuen
, D.
, 2003, “Dynamical Clustering of Red Blood Cells in Capillary Vessels
,” J. Mol. Model.
0948-5023, 9
, pp. 16
–33
.2.
Tanaka
, M.
, and Koshizuka
, S.
, 2007, “Simulation of Red Blood Cell Deformation Using a Particle Method
,” Nagare
0286-3154, 26
, pp. 49
–55
(in Japanese).3.
Noguchi
, H.
, and Gompper
, G.
, 2005, “Shape Transitions of Fluid Vesicles and Red Blood Cells in Capillary Flows
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 102
(40
), pp. 14159
–14164
.4.
Dupin
, M.
, Halliday
, I.
, Care
, C.
, Alboul
, L.
, Munn
, L.
, 2007, “Modeling the Flow of Dense Suspension of Deformable Particles in Three Dimensions
,” Phys. Rev. E
1063-651X, 75
(6
), p. 066707
.5.
Lefebvre
, A.
, and Maury
, B.
, 2005, “Apparent Viscosity of a Mixture of a Newtonian Fluid and Interacting Particles
,” C. R. Mec.
1631-0721, 333
(12
), pp. 923
–933
.6.
Pozrikidis
, C.
, 2005, “Axisymmetric Motion of a File of Red Blood Cells Through Capillaries
,” Phys. Fluids
1070-6631, 17
(3
), p. 031503
.7.
Bagchi
, P.
, 2007, “Mesoscale Simulation of Blood Flow in Small Vessels
,” Biophys. J.
0006-3495, 92
(6
), pp. 1858
–1877
.8.
Peskin
, C.
, 1977, “Numerical Analysis of Blood Flows in the Heart
,” J. Comput. Phys.
0021-9991, 25
, pp. 220
–252
.9.
Unverdi
, S.
, and Tryggvason
, G.
, 1992, “A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,” J. Comput. Phys.
0021-9991, 100
, pp. 25
–37
.10.
Tryggvason
, G.
, Bunner
, B.
, Esmaeeli
, A.
, Juric
, D.
, Al-Rawahi
, N.
, Tauber
, W.
, Han
, J.
, Nas
, S.
, and Jan
, Y.
, 2001, “A Front-Tracking Method for the Computations of Multiphase Flow
,” J. Comput. Phys.
0021-9991, 169
, pp. 708
–759
.11.
Pozrikidis
, C.
, 2001, “Effect of Membrane Bending Stiffness on the Deformation of Capsules in Simple Shear Flow
,” J. Fluid Mech.
0022-1120, 440
, pp. 269
–291
.12.
Skalak
, R.
, Tozeren
, A.
, Zarda
, R.
, and Chien
, S.
, 1973, “Strain Energy Function of Red Blood Cell Membranes
,” Biophys. J.
0006-3495, 13
, pp. 245
–264
.13.
Takagi
, S.
, Yamada
, T.
, Gong
, X.
, and Matsumoto
, Y.
, 2009, “The Deformation of a Vesicle in a Linear Shear Flow
,” ASME J. Appl. Mech.
0021-8936, 76
(2
), p. 021207
.14.
Evans
, E.
, and Fung
, Y.
, 1972, “Improved Measurement of the Erythrocyte Geometry
,” Microvasc. Res.
0026-2862, 4
, pp. 335
–347
.15.
Fischer
, T.
, and Schmid-Schonbein
, H.
, 1977, “Tank Tread Motion of Red Cell Membranes in Viscometric Flow: Behavior of Intracellular and Extracellular Markers
,” Blood Cells
0340-4684, 3
, pp. 351
–365
.16.
Pozrikidis
, C.
, 2003, “Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells
,” Ann. Biomed. Eng.
0090-6964, 31
, pp. 1194
–1205
.17.
Chien
, S.
, Sung
, L.
, Lee
, M.
, and Skalak
, R.
, 1992, “Red Cell Membrane Elasticity as Dertermind by Flow Channel Technique
,” Biorheology
0006-355X, 29
, pp. 467
–478
.18.
Chien
, S.
, Sung
, L.
, Skalak
, R.
, Usami
, S.
, and Tozeren
, A.
, 1978, “Theoretical and Experimental Studies on Viscoelastic Properties of Erythrocyte Membrane
,” Biophys. J.
0006-3495, 24
, pp. 463
–487
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.