Advances in nanotechnology are enabling many new diagnostic and therapeutic approaches in cancer. In this review, examples where nanoparticles are employed to induce localized heating within tumors are explored. Approaches to nanoparticle-mediated thermal therapy include absorption of infrared light, radio frequency ablation, and magnetically-induced heating. These approaches have demonstrated high efficacy in animal models, and two are already in human clinical trials.

1.
Center for Disease Control
, 2001,
CDC Mortality Data
.
2.
American Cancer Society
, 2001, Cancer Facts and Figures 2001, Atlanta, GA.
3.
Castrenpersons
,
M.
,
Schroder
,
T.
,
Ramo
,
O. J.
,
Puolakkainen
,
P.
, and
Lehtonen
,
E.
, 1991, “
Contact Nd-Yag Laser Potentiates the Tumor-Cell Killing Effect of Hyperthermia
,”
Lasers Surg. Med.
0196-8092,
11
(
6
), pp.
595
600
.
4.
Chen
,
W. R.
,
Adams
,
R. L.
,
Carubelli
,
R.
, and
Nordquist
,
R. E.
, 1997, “
Laser-Photosensitizer Assisted Immunotherapy: A Novel Modality for Cancer Treatment
,”
Cancer Lett.
0304-3835,
115
(
1
), pp.
25
30
.
5.
Waldow
,
S. M.
,
Morrison
,
P. R.
, and
Grossweiner
,
L. I.
, 1988, “
Nd-Yag Laser Induced Hyperthermia in a Mouse-Tumor Model
,”
Lasers Surg. Med.
0196-8092,
8
(
5
), pp.
510
514
.
6.
Jolesz
,
F. A.
, and
Hynynen
,
K.
, 2002, “
Magnetic Resonance Image-Guided Focused Ultrasound Surgery
,”
Cancer J.
1528-9117,
8
, pp.
S100
S112
.
7.
Seki
,
T.
,
Wakabayashi
,
M.
,
Nakagawa
,
T.
,
Imamura
,
M.
,
Tamai
,
T.
,
Nishimura
,
A.
,
Yamashiki
,
N.
,
Okamura
,
A.
, and
Inoue
,
K.
, 1999, “
Percutaneous Microwave Coagulation Therapy for Patients With Small Hepatocellular Carcinoma—Comparison With Percutaneous Ethanol Injection Therapy
,”
Cancer
0008-543X,
85
(
8
), pp.
1694
1702
.
8.
Kong
,
G.
,
Braun
,
R. D.
, and
Dewhirst
,
M. W.
, 2001, “
Characterization of the Effect of Hyperthermia on Nanoparticle Extravasation From Tumor Vasculature
,”
Cancer Res.
0008-5472,
61
(
7
), pp.
3027
3032
.
9.
Pearce
,
J.
, and
Tomsen
,
S.
, 1995,
Optical-Thermal Response of Laser-Irradiated Tissue
,
Plenum
,
New York
.
10.
Thomsen
,
S.
, 1991, “
Pathological Analysis of Photothermal and Photomechanical Effects of Laser-Tissue Interactions
,”
Photochem. Photobiol.
0031-8655,
53
(
6
), pp.
825
835
.
11.
Van Gemert
,
M. J. C.
,
Welch
,
A. J.
,
Pickering
,
J. W.
,
Tan
,
O. T.
, and
Gijsbers
,
G. H. M.
, 1995, “
Wavelengths for Laser Treatment of Port-Wine Stains and Telangiectasia
,”
Lasers Surg. Med.
0196-8092,
16
(
2
), pp.
147
155
.
12.
Averitt
,
R. D.
,
Sarkar
,
D.
, and
Halas
,
N. J.
, 1997, “
Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight Into Multicomponent Nanoparticle Growth
,”
Phys. Rev. Lett.
0031-9007,
78
(
22
), pp.
4217
4220
.
13.
Averitt
,
R. D.
,
Westcott
,
S. L.
, and
Halas
,
N. J.
, 1999, “
Ultrafast Optical Properties of Gold Nanoshells
,”
J. Opt. Soc. Am. B
0740-3224,
16
(
10
), pp.
1814
1823
.
14.
James
,
W. D.
,
Hirsch
,
L. R.
,
West
,
J. L.
,
O’Neal
,
P. D.
, and
Payne
,
J. D.
, 2007, “
Application of INAA to the Build-Up and Clearance of Gold Nanoshells in Clinical Studies in Mice
,”
J. Radioanal. Nucl. Chem.
0236-5731,
271
(
2
), pp.
455
459
.
15.
O’Neal
,
D. P.
,
Hirsch
,
L. R.
,
Halas
,
N. J.
,
Payne
,
J. D.
, and
West
,
J. L.
, 2004, “
Photo-Thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles
,”
Cancer Lett.
0304-3835,
209
(
2
), pp.
171
176
.
16.
Hashizume
,
H.
,
Baluk
,
P.
,
Morikawa
,
S.
,
Mclean
,
J. W.
,
Thurston
,
G.
,
Roberge
,
S.
,
Jain
,
R. K.
, and
Mcdonald
,
D. M.
, 2000, “
Openings Between Defective Endothelial Cells Explain Tumor Vessel Leakiness
,”
Am. J. Pathol.
0002-9440,
156
(
4
), pp.
1363
1380
.
17.
Hirsch
,
L. R.
,
Stafford
,
R. J.
,
Bankson
,
J. A.
,
Sershen
,
S. R.
,
Rivera
,
B.
,
Price
,
R. E.
,
Hazle
,
J. D.
,
Halas
,
N. J.
, and
West
,
J. L.
, 2003, “
Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
23
), pp.
13549
13554
.
18.
Bernardi
,
R. J.
,
Lowery
,
A. R.
,
Thompson
,
P. A.
,
Blaney
,
S. M.
, and
West
,
J. L.
, 2008, “
Immunonanoshells for Targeted Photothermal Ablation in Medulloblastoma and Glioma: An In Vitro Evaluation Using Human Cell Lines
,”
J. Neuro-Oncol.
0167-594X,
86
(
2
), pp.
165
172
.
19.
Lowery
,
A. R.
,
Gobin
,
A. M.
,
Day
,
E. S.
,
Halas
,
N. J.
, and
West
,
J. L.
, 2006, “
Immunonanoshells for Targeted Photothermal Ablation of Tumor Cells
,”
Int. J. Nanomedicine
,
1
(
2
), pp.
149
154
. 1176-9114
20.
Huang
,
X. H.
,
El-Sayed
,
I. H.
,
Qian
,
W.
, and
El-Sayed
,
M. A.
, 2006, “
Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods
,”
J. Am. Chem. Soc.
0002-7863,
128
(
6
), pp.
2115
2120
.
21.
Norman
,
R. S.
,
Stone
,
J. W.
,
Gole
,
A.
,
Murphy
,
C. J.
, and
Sabo-Attwood
,
T. L.
, 2008, “
Targeted Photothermal Lysis of the Pathogenic Bacteria, Pseudomonas Aeruginosa, With Gold Nanorods
,”
Nano Lett.
1530-6984,
8
(
1
), pp.
302
306
.
22.
Zharov
,
V. P.
,
Galitovskaya
,
E. N.
,
Johnson
,
C.
, and
Kelly
,
T.
, 2005, “
Synergistic Enhancement of Selective Nanophotothermolysis With Gold Nanoclusters: Potential for Cancer Therapy
,”
Lasers Surg. Med.
0196-8092,
37
(
4
), pp.
329
329
.
23.
Zharov
,
V. P.
,
Kim
,
J. -W.
,
Curiel
,
D. T.
, and
Everts
,
M.
, 2005, “
Self-Assembling Nanoclusters in Living Systems: Application for Integrated Photothermal Nanodiagnostics and Nanotherapy
,”
Nanomedicine
1743-5889,
1
(
4
), pp.
326
345
.
24.
Skrabalak
,
S. E.
,
Au
,
L.
,
Lu
,
X. M.
,
Li
,
X. D.
, and
Xia
,
Y. N.
, 2007, “
Gold Nanocages for Cancer Detection and Treatment
,”
Nanomedicine
1743-5889,
2
(
5
), pp.
657
668
.
25.
Melancon
,
M. P.
,
Lu
,
W.
,
Yang
,
Z.
,
Zhang
,
R.
,
Cheng
,
Z.
,
Elliot
,
A. M.
,
Stafford
,
J.
,
Olson
,
T.
,
Zhang
,
J. Z.
, and
Li
,
C.
, 2008, “
In Vitro and In Vivo Targeting of Hollow Gold Nanoshells Directed at Epidermal Growth Factor Receptor for Photothermal Ablation Therapy
,”
Mol. Cancer Ther.
,
7
(
6
), pp.
1730
1739
. 1535-7163
26.
Niidome
,
T.
,
Yamagata
,
M.
,
Okamoto
,
Y.
,
Akiyama
,
Y.
,
Takahashi
,
H.
,
Kawano
,
T.
,
Katayama
,
Y.
, and
Niidome
,
Y.
, 2006, “
PEG-Modified Gold Nanorods With a Stealth Character for In Vivo Applications
,”
J. Controlled Release
0168-3659,
114
(
3
), pp.
343
347
.
27.
Ito
,
A.
,
Honda
,
H.
, and
Kobayashi
,
T.
, 2006, “
Cancer Immunotherapy Based on Intracellular Hyperthermia Using Magnetite Nanoparticles: A Novel Concept of “Heat-Controlled Necrosis” With Heat Shock Protein Expression
,”
Cancer Immunol. Immunother
0340-7004,
55
(
3
), pp.
320
328
.
28.
Gilchrist
,
R. K.
,
Medal
,
R.
,
Shorey
,
W. D.
,
Hanselman
,
R. C.
,
Parrott
,
J. C.
, and
Taylor
,
C. B.
, 1957, “
Selective Inductive Heating of Lymph Nodes
,”
Ann. Surg.
0003-4932,
146
(
4
), pp.
596
606
.
29.
Hergt
,
R.
,
Andra
,
W.
,
d’Ambly
,
C. G.
,
Hilger
,
I.
,
Kaiser
,
W. A.
,
Richter
,
U.
, and
Schmidt
,
H. G.
, 1998, “
Physical Limits of Hyperthermia Using Magnetite Fine Particles
,”
IEEE Trans. Magn.
0018-9464,
34
(
5
), pp.
3745
3754
.
30.
Wang
,
X. M.
,
Gu
,
H. C.
, and
Yang
,
Z. Q.
, 2005, “
The Heating Effect of Magnetic Fluids in an Alternating Magnetic Field
,”
J. Magn. Magn. Mater.
0304-8853,
293
(
1
), pp.
334
340
.
31.
Jordan
,
A.
,
Scholz
,
R.
,
Maier-Hauff
,
K.
,
van Landeghem
,
F. K. H.
,
Waldoefner
,
N.
,
Teichgraeber
,
U.
,
Pinkernelle
,
J.
,
Bruhn
,
H.
,
Neumann
,
F.
,
Thiesen
,
B.
,
von Deimling
,
A.
, and
Felix
,
R.
, 2006, “
The Effect of Thermotherapy Using Magnetic Nanoparticles on Rat Malignant Glioma
,”
J. Neuro-Oncol.
0167-594X,
78
(
1
), pp.
7
14
.
32.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Eckelt
,
L.
,
Feussner
,
A.
,
Waldofner
,
N.
,
Scholz
,
R.
,
Deger
,
S.
,
Wust
,
P.
,
Loening
,
S. A.
, and
Jordan
,
A.
, 2005, “
Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique
,”
Int. J. Hyperthermia
0265-6736,
21
(
7
), pp.
637
647
.
33.
Rand
,
R. W.
,
Snow
,
H. D.
,
Elliott
,
D. G.
, and
Snyder
,
M.
, 1981, “
Thermomagnetic Surgery for Cancer
,”
Appl. Biochem. Biotechnol.
0273-2289,
6
(
4
), pp.
265
272
.
34.
Hilger
,
I.
,
Hergt
,
R.
, and
Kaiser
,
W. A.
, 2005, “
Towards Breast Cancer Treatment by Magnetic Heating
,”
J. Magn. Magn. Mater.
0304-8853,
293
(
1
), pp.
314
319
.
35.
Hilger
,
I.
,
Dietmar
,
E.
,
Linss
,
W.
,
Streck
,
S.
, and
Kaiser
,
W. A.
, 2006, “
Developments for the Minimally Invasive Treatment of Tumours by Targeted Magnetic Heating
,”
J. Phys.: Condens. Matter
0953-8984,
18
(
38
), pp.
S2951
S2958
.
36.
Ito
,
A.
,
Kuga
,
Y.
,
Honda
,
H.
,
Kikkawa
,
H.
,
Horiuchi
,
A.
,
Watanabe
,
Y.
, and
Kobayashi
,
T.
, 2004, “
Magnetite Nanoparticle-Loaded Anti-HER2 Immunoliposomes for Combination of Antibody Therapy With Hyperthermia
,”
Cancer Lett.
0304-3835,
212
(
2
), pp.
167
175
.
37.
Le
,
B.
,
Shinkai
,
M.
,
Kitade
,
T.
,
Honda
,
H.
,
Yoshida
,
J.
,
Wakabayashi
,
T.
, and
Kobayashi
,
T.
, 2001, “
Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia
,”
J. Chem. Eng. Jpn.
0021-9592,
34
(
1
), pp.
66
72
.
38.
Shinkai
,
M.
,
Le
,
B.
,
Honda
,
H.
,
Yoshikawa
,
K.
,
Shimizu
,
K.
,
Saga
,
S.
,
Wakabayashi
,
T.
,
Yoshida
,
J.
, and
Kobayashi
,
T.
, 2001, “
Targeting Hyperthermia for Renal Cell Carcinoma Using Human Mn Antigen-Specific Magnetoliposomes
,”
Jpn. J. Cancer Res.
0910-5050,
92
(
10
), pp.
1138
1145
.
39.
Maier-Hauff
,
K.
,
Rothe
,
R.
,
Scholz
,
R.
,
Gneveckow
,
U.
,
Wust
,
P.
,
Thiesen
,
B.
,
Feussner
,
A.
,
Von Deimling
,
A.
,
Waldoefner
,
N.
,
Felix
,
R.
, and
Jordan
,
A.
, 2007, “
Intracranial Thermotherapy Using Magnetic Nanoparticles Combined With External Beam Radiotherapy: Results of a Feasibility Study on Patients With Glioblastoma Multiforme
,”
J. Neuro-Oncol.
0167-594X,
81
(
1
), pp.
53
60
.
40.
Curley
,
S. A.
, 2001, “
Radiofrequency Ablation of Malignant Liver Tumors
,”
Oncologist
1083-7159,
6
(
1
), pp.
14
23
.
41.
Barnes
,
F.
, and
Greenebaum
,
B.
, 2006, “
Bioengineering and Biophysical Aspects of Electromagnetic Fields
,”
Handbook of Biological Effects of Electromagnetic Fields
,
3rd ed.
,
CRC
,
Boca Raton, FL
.
42.
Cardinal
,
J.
,
Klune
,
J. R.
,
Chory
,
E.
,
Jeyabalan
,
G.
,
Kanzius
,
J. S.
,
Nalesnik
,
M.
, and
Geller
,
D. A.
, 2008, “
Noninvasive Radiofrequency Ablation of Cancer Targeted by Gold Nanoparticles
,”
Surgery (St. Louis)
0039-6060,
144
(
2
), pp.
125
132
.
43.
Gannon
,
C.
,
Patra
,
C.
,
Bhattacharya
,
R.
,
Mukherjee
,
P.
, and
Curley
,
S.
, 2008, “
Intracellular Gold Nanoparticles Enhance Non-Invasive Radiofrequency Thermal Destruction of Human Gastrointestinal Cancer Cells
,”
J. Nanobiotechnology
,
6
(
1
). 1477-3155
44.
Gannon
,
C. J.
,
Cherukuri
,
P.
,
Yakobson
,
B. I.
,
Cognet
,
L.
,
Kanzius
,
J. S.
,
Kittrell
,
C.
,
Weisman
,
R. B.
,
Pasquali
,
M.
,
Schmidt
,
H. K.
,
Smalley
,
R. E.
, and
Curley
,
S. A.
, 2007, “
Carbon Nanotube-Enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field
,”
Cancer
0008-543X,
110
(
12
), pp.
2654
2665
.
45.
Roschmann
,
P.
, 1987, “
Radiofrequency Penetration and Absorption in the Human Body-Limitations to High-Field Whole-Body Nuclear Magnetic Resonance Imaging
,”
Med. Phys.
0094-2405,
14
(
6
), pp.
922
931
.
46.
Gobin
,
A. M.
, 2007, “
Photothermal Therapies Using Near Infrared Absorbing Nanoparticles
,” Ph.D. thesis, Rice University, Houston, TX.
47.
Gobin
,
A. M.
,
Lee
,
M. H.
,
Halas
,
N. J.
,
James
,
W. D.
,
Drezek
,
R. A.
, and
West
,
J. L.
, 2007, “
Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy
,”
Nano Lett.
1530-6984,
7
(
7
), pp.
1929
1934
.
You do not currently have access to this content.