The mechanical behavior of human tympanic membrane (TM) has been investigated extensively under quasistatic loading conditions in the past. The results, however, are sparse for the mechanical properties (e.g., Young's modulus) of the TM at high strain rates, which are critical input for modeling the mechanical response under blast wave. The property data at high strain rates can also potentially be converted into complex modulus in frequency domain to model acoustic transmission in the human ear. In this study, we developed a new miniature split Hopkinson tension bar to investigate the mechanical behavior of human TM at high strain rates so that a force of up to half of a newton can be measured accurately under dynamic loading conditions. Young’s modulus of a normal human TM is reported as 45.2–58.9 MPa in the radial direction, and 34.1–56.8 MPa in the circumferential direction at strain rates 3002000s1. The results indicate that Young’s modulus has a strong dependence on strain rate at these high strain rates.

1.
von Békésy
,
G.
, 1960,
Experiments in Hearing
,
McGraw Hill
,
New York
.
2.
Fay
,
J.
,
Puria
,
S.
,
Decraemer
,
W. F.
, and
Steele
,
C.
, 2005, “
Three Approaches for Estimating the Elastic Modulus of the Tympanic Membrane
,”
J. Biomech.
0021-9290,
38
, pp.
1807
1815
.
3.
Cheng
,
T.
,
Dai
,
C.
, and
Gan
,
R. Z.
, 2007, “
Viscoelastic Properties of Human Tympanic Membrane
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
305
314
.
4.
Gaihede
,
M.
,
Liao
,
D.
, and
Gregersen
,
H.
, 2007, “
In Vivo Areal Modulus of Elasticity Estimation of the Human Tympanic Membrane System: Modeling of Middle Ear Mechanical Function in Normal Young and Aged Ears
,”
Phys. Med. Biol.
0031-9155,
52
, pp.
803
814
.
5.
Dirckx
,
J. J.
, and
Decraemer
,
W. F.
, 2001, “
Effect of Middle Ear Components on Eardrum Quasi-Static Deformation
,”
Hear. Res.
0378-5955,
157
, pp.
124
137
.
6.
Huang
,
G.
,
Daphalapurkar
,
N. P.
,
Gan
,
R. Z.
, and
Lu
,
H.
, 2007, “
A Method for Measuring Linearly Viscoelastic Properties of Human Tympanic Membrane Using Nanoindentation
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
014501
.
7.
Daphalapurkar
,
N. P.
,
Dai
,
C.
,
Gan
,
R. Z.
, and
Lu
,
H.
, 2009, “
Characterization of the Linearly Viscoelastic Behavior of Human Tympanic Membrane by Nanoindentation
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
2
, pp.
82
92
.
8.
Voss
,
S. E.
,
Rosowski
,
J. J.
,
Merchant
,
S. N.
, and
Peake
,
W. T.
, 2001, “
Middle-Ear Function With Tympanic-Membrane Perforations. I. Measurements and Mechanisms
,”
J. Acoust. Soc. Am.
0001-4966,
110
, pp.
1432
1444
.
9.
Eiber
,
A.
, and
Schiehlen
,
W.
, 1996, “
Reconstruction of Hearing by Mechatronical Devices
,”
Robot. Auton. Syst.
,
19
, pp.
199
204
. 0921-8890
10.
Ferris
,
P.
, and
Prendergast
,
P. J.
, 2000, “
Middle-Ear Dynamics Before and After Ossicular Replacement
,”
J. Biomech.
0021-9290,
33
, pp.
581
590
.
11.
Lim
,
D. J.
, 1995, “
Structure and Function of Tympanic Membrane: A Review
,”
Acta Otorhinolaryngol. Belg.
0001-6497,
49
, pp.
101
115
.
12.
Kirikae
,
I.
, 1960,
The Structure and Function of the Middle Ear
,
University of Tokyo Press
,
Tokyo
.
13.
Sun
,
Q.
,
Chang
,
K.
,
Dormer
,
K. J.
,
Dyer
,
R. K.
, and
Gan
,
R. Z.
, 2002, “
An Advanced Computer-Aided Geometric Modeling and Fabrication Method for Human Middle Ear
,”
Med. Eng. Phys.
1350-4533,
24
, pp.
595
606
.
14.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
, 2004, “
Three-Dimensional Finite Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
847
859
.
15.
Gan
,
R. Z.
,
Sun
,
Q.
,
Feng
,
B.
, and
Wood
,
M. W.
, 2006, “
Acoustic-Structural Coupled Finite Element Analysis for Sound Transmission in Human Ear-Pressure Distributions
,”
Med. Eng. Phys.
1350-4533,
28
, pp.
395
404
.
16.
Wang
,
X.
,
Cheng
,
T.
, and
Gan
,
R. Z.
, 2007, “
Finite-Element Analysis of Middle-Ear Pressure Effects on Static and Dynamic Behavior of Human Ear
,”
J. Acoust. Soc. Am.
0001-4966,
122
, pp.
906
917
.
17.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed., Springer,
New York
.
18.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
, 2002, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-independent under Shear Loading
,”
J. Biomech.
0021-9290,
35
, pp.
943
950
.
19.
Shim
,
V. P. W.
,
Liu
,
J. F.
, and
Lee
,
V. S.
, 2006, “
A Technique for Dynamic Tensile Testing of Human Cervical Spine Ligaments
,”
Exp. Mech.
0014-4851,
46
, pp.
77
89
.
20.
Shergold
,
O. A.
,
Fleck
,
N. A.
, and
Radford
,
D.
, 2006, “
The Uniaxial Stress Versus Strain Response of Pig Skin and Silicone Rubber at Low and High Strain Rates
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
1384
1402
.
21.
Song
,
B.
,
Chen
,
W.
,
Ge
,
Y.
, and
Weerasooriya
,
T.
, 2007, “
Dynamic and Quasi-Static Compressive Response of Porcine Muscle
,”
J. Biomech.
0021-9290,
40
, pp.
2999
3005
.
22.
Van Sligtenhorst
,
C.
,
Cronin
,
D. S.
, and
Brodland
,
G. W.
, 2006, “
High Strain Rate Compressive Properties of Bovine Muscle Tissue Determined Using a Split Hopkinson Bar Apparatus
,”
J. Biomech.
0021-9290,
39
, pp.
1852
1858
.
23.
Saraf
,
H.
,
Ramesh
,
K. T.
,
Lennon
,
A. M.
,
Merkle
,
A. C.
, and
Roberts
,
J. C.
, 2007, “
Mechanical Properties of Soft Human Tissues Under Dynamic Loading
,”
J. Biomech.
0021-9290,
40
, pp.
1960
1967
.
24.
Chen
,
W.
,
Lu
,
F.
, and
Cheng
,
M.
, 2002, “
Tension and Compression Tests of Two Polymers Under Quasi-Static and Dynamic Loading
,”
Polym. Test.
0142-9418,
21
, pp.
113
121
.
25.
Chen
,
W.
,
Zhang
,
B.
, and
Forrestal
,
M. J.
, 1999, “
A Split Hopkinson Bar Technique for Low-Impendence Materials
,”
Exp. Mech.
0014-4851,
39
, pp.
81
85
.
26.
Cheng
,
M.
, and
Chen
,
W.
, 2003, “
Experimental Investigation of the Stress-Stretch Behavior of EPDM Rubber With Loading Rate Effects
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
4749
4768
.
27.
Lu
,
H.
,
Luo
,
H.
, and
Gan
,
R.
, 2007, “
Measurements of Young’s Modulus of Human Eardrum at High Strain Rates using a Miniature Split Hopkinson Tension Bar
,”
Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2007
, Vol.
1
, pp.
190
194
.
28.
Luo
,
H.
,
Lu
,
H.
, and
Leventis
,
N.
, 2006, “
The Compressive Behavior of Isocyanate-Crosslinked Silica Aerogel at High Strain Rates
,”
Mech. Time-Depend. Mater.
1385-2000,
10
, pp.
83
111
.
29.
Luo
,
H.
,
Chen
,
W.
, and
Lu
,
H.
, 2008, “
Tensile Behavior of a Polymer Film at High Strain Rates
,”
Proceedings of the Society for Experimental Mechanics-11th International Congress and Exhibition on Experimental and Applied Mechanics
, Vol. 2, pp.
623
628
.
30.
Gray
,
G. T.
, 2000, “
Classic Split Hopkinson Pressure Bar Technique
,”
Mechanical Testing and Evaluation
, Vol.
8
,
ASM
, pp.
462
476
.
31.
Cheng
,
T.
, and
Gan
,
R. Z.
, 2008, “
Mechanical Properties of Anterior Malleolar Ligament From Experimental Measurement and Material Modeling Analysis
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
387
394
.
You do not currently have access to this content.