While mechanical stimulation of cells seeded within scaffolds is widely thought to be beneficial, the amount of benefit observed is highly variable between experimental systems. Although studies have investigated specific experimental loading protocols thought to be advantageous for cartilage growth, less is known about the physical stimuli (e.g., pressures, velocities, and local strains) cells experience during these experiments. This study used results of a literature survey, which looked for patterns in the efficacy of mechanical stimulation of chondrocyte seeded scaffolds, to inform the modeling of spatial patterns of physical stimuli present in mechanically stimulated constructs. The literature survey revealed a large variation in conditions used in mechanical loading studies, with a peak to peak strain of 10% (i.e., the maximum amount of deformation experienced by the scaffold) at 1 Hz on agarose scaffolds being the most frequently studied parameters and scaffold. This loading frequency was then used as the basis for simulation in the finite element analyses. 2D axisymmetric finite element models of 2×4mm2 scaffolds with 360 modulus/permeability combinations were constructed using COMSOLMULTIPHYSICS software. A time dependent coupled pore pressure/effective stress analysis was used to model fluid/solid interactions in the scaffolds upon loading. Loading was simulated using an impermeable frictionless loader on the top boundary with fluid and solid displacement confined to the radial axis. As expected, all scaffold materials exhibited classic poro-elastic behavior having pressurized cores with low fluid flow and edges with high radial fluid velocities. Under the simulation parameters of this study, PEG scaffolds had the highest pressure and radial fluid velocity but also the lowest shear stress and radial strain. Chitosan and KLD-12 simulated scaffold materials had the lowest radial strains and fluid velocities, with collagen scaffolds having the lowest pressures. Parametric analysis showed maximum peak pressures within the scaffold to be more dependent on scaffold modulus than on permeability and velocities to depend on both scaffold properties similarly. The dependence of radial strain on permeability or modulus was more complex; maximum strains occurred at lower permeabilities and moduli, and the lowest strain occurred at the stiffest most permeable scaffold. Shear stresses within all scaffolds were negligible. These results give insight into the large variations in metabolic response seen in studies involving mechanical stimulation of cell-seeded constructs, where the same loading conditions produce very different results due to the differences in material properties.

1.
Mayne
,
R.
,
Vail
,
M. S.
,
Mayne
,
P. M.
, and
Miller
,
E. J.
, 1976, “
Changes in Type of Collagen Synthesized as Clones of Chick Chondrocytes Grow and Eventually Lose Division Capacity
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
73
(
5
), pp.
1674
1678
.
2.
Pittenger
,
M. F.
,
Mackay
,
A. M.
,
Beck
,
S. C.
,
Jaiswal
,
R. K.
,
Douglas
,
R.
,
Mosca
,
J. D.
,
Moorman
,
M. A.
,
Simonetti
,
D. W.
,
Craig
,
S.
, and
Marshak
,
D. R.
, 1999, “
Multilineage Potential of Adult Human Mesenchymal Stem Cells
,”
Science
0036-8075,
284
(
5411
), pp.
143
147
.
3.
Mackay
,
A. M.
,
Beck
,
S. C.
,
Murphy
,
J. M.
,
Barry
,
F. P.
,
Chichester
,
C. O.
, and
Pittenger
,
M. F.
, 1998, “
Chondrogenic Differentiation of Cultured Human Mesenchymal Stem Cells From Marrow
,”
Tissue Eng.
1076-3279,
4
(
4
), pp.
415
428
.
4.
Mauck
,
R. L.
,
Yuan
,
X.
, and
Tuan
,
R. S.
, 2006, “
Chondrogenic Differentiation and Functional Maturation of Bovine Mesenchymal Stem Cells in Long-Term Agarose Culture
,”
Osteoarthritis Cartilage
1063-4584,
14
(
2
), pp.
179
189
.
5.
Carter
,
D. R.
,
Wong
,
M.
, and
Orr
,
T. E.
, 1991, “
Musculoskeletal Ontogeny, Phylogeny, and Functional Adaptation
,”
J. Biomech.
0021-9290,
24
(
1
), pp.
3
16
.
6.
Lelkes
,
G.
, 1958, “
Experiments In Vitro on the Role of Movement in the Development of Joints
,”
J. Embryol. Exp. Morphol.
0022-0752,
6
(
2
), pp.
183
186
.
7.
Rot-Nikcevic
,
I.
,
Reddy
,
T.
,
Downing
,
K. J.
,
Belliveau
,
A. C.
,
Hallgrimsson
,
B.
,
Hall
,
B. K.
, and
Kablar
,
B.
, 2006, “
Myf5-/-:MyoD-/-Amyogenic Fetuses Reveal the Importance of Early Contraction and Static Loading by Striated Muscle in Mouse Skeletogenesis
,”
Dev. Genes Evol.
0949-944X,
216
(
1
), pp.
1
9
.
8.
Uhthoff
,
H. K.
, and
Jaworski
,
Z. F.
, 1978, “
Bone Loss in Response to Long-Term Immobilisation
,”
J. Bone Joint Surg. Br.
0301-620X,
60-B
(
3
), pp.
420
429
.
9.
Smith
,
R. L.
,
Thomas
,
K. D.
,
Schurman
,
D. J.
,
Carter
,
D. R.
,
Wong
,
M.
, and
van der Meulen
,
M. C.
, 1992, “
Rabbit Knee Immobilization: Bone Remodeling Precedes Cartilage Degradation
,”
J. Orthop. Res.
0736-0266,
10
(
1
), pp.
88
95
.
10.
Akeson
,
W. H.
,
Amiel
,
D.
,
Abel
,
M. F.
,
Garfin
,
S. R.
, and
Woo
,
S. L.
, 1987, “
Effects of Immobilization on Joints
,”
Clin. Orthop. Relat. Res.
0009-921X,
219
, pp.
28
37
.
11.
Behrens
,
F.
,
Kraft
,
E. L.
, and
Oegema
,
T. R.
, Jr.
, 1989, “
Biochemical Changes in Articular Cartilage After Joint Immobilization by Casting or External Fixation
,”
J. Orthop. Res.
0736-0266,
7
(
3
), pp.
335
343
.
12.
Langenskiold
,
A.
,
Michelsson
,
J. E.
, and
Videman
,
T.
, 1979, “
Osteoarthritis of the Knee in the Rabbit Produced by Immobilization. Attempts to Achieve a Reproducible Model for Studies on Pathogenesis and Therapy
,”
Acta Orthop. Scand.
0001-6470,
50
(
1
), pp.
1
14
.
13.
Henderson
,
J. H.
, and
Carter
,
D. R.
, 2002, “
Mechanical Induction in Limb Morphogenesis: The Role of Growth-Generated Strains and Pressures
,”
Bone
,
31
(
6
), pp.
645
53
. 8756-3282
14.
Nowlan
,
N. C.
,
Murphy
,
P.
, and
Prendergast
,
P. J.
, 2007, “
Mechanobiology of Embryonic Limb Development
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1101
, pp.
389
411
.
15.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
, 1995, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1055
1066
.
16.
Lima
,
E. G.
,
Mauck
,
R. L.
,
Han
,
S. H.
,
Park
,
S.
,
Ng
,
K. W.
,
Ateshian
,
G. A.
, et al.
, 2004, “
Functional Tissue Engineering of Chondral and Osteochondral Constructs
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
577
590
.
17.
Silva
,
P.
,
Crozier
,
S.
,
Veidt
,
M.
, and
Pearcy
,
M. J.
, 2005, “
An Experimental and Finite Element Poro-elastic Creep Response Analysis of an Intervertebral Hydrogel Disc Model in Axial Compression
,”
J. Mater. Sci. Mater. Med.
,
16
(
7
), pp.
663
669
. 0957-4530
18.
Lacroix
,
D.
,
Chateau
,
A.
,
Ginebra
,
M. P.
, and
Planell
,
J. A.
, 2006, “
Micro-Finite Element Models of Bone Tissue-Engineering Scaffolds
,”
Biomaterials
0142-9612,
27
(
30
), pp.
5326
5334
.
19.
Cioffi
,
M.
,
Boschetti
,
F.
,
Raimondi
,
M. T.
, and
Dubini
,
G.
, 2006, “
Modeling Evaluation of the Fluid-Dynamic Microenvironment in Tissue-Engineered Constructs: A Micro-CT Based Model
,”
Biotechnol. Bioeng.
0006-3592,
93
(
3
), pp.
500
510
.
20.
Fourest
,
E.
, and
Volesky
,
B.
, 1997, “
Alginate Properties and Heavy Metal Biosorption by Marine Algae
,”
Appl. Biochem. Biotechnol.
0273-2289,
67
(
3
), pp.
215
226
.
21.
Chatchawalsaisin
,
J.
,
Podczeck
,
F.
, and
Newton
,
J. M.
, 2004, “
The Influence of Chitosan and Sodium Alginate and Formulation Variables on the Formation and Drug Release From Pellets Prepared by Extrusion/Spheronisation
,”
Int. J. Pharm.
0378-5173,
275
(
1–2
), pp.
41
60
.
22.
Serwer
,
P.
, 1983, “
Agarose Gels-Properties and Use for Electrophoresis
,”
Electrophoresis
0173-0835,
4
(
6
), pp.
375
382
.
23.
Matsukawa
M
,
Sasaki
K
,
Akimoto
T
,
Otani
T.
, 2002, “
Application of a Suspension Theory to Particle-Dispersed Agarose Gels
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
41
, pp.
3163
3167
.
24.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1990, “
Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: A Finite Element Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
2
), pp.
138
146
.
25.
Connelly
,
J. T.
,
Vanderploeg
,
E. J.
, and
Levenston
,
M. E.
, 2004, “
The Influence of Cyclic Tension Amplitude on Chondrocyte Matrix Synthesis: Experimental and Finite Element Analyses
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
377
387
.
26.
Gleghorn
,
J. P.
,
Jones
,
A. R.
,
Flannery
,
C. R.
, and
Bonassar
,
L. J.
, 2007, “
Boundary Mode Frictional Properties of Engineered Cartilaginous Tissues
,”
Eur. Cell. Mater.
,
14
, pp.
20
28
. 1473-2262
27.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
, 1995, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell Sci.
,
108
(
Pt 4
), pp.
1497
508
. 0021-9533
28.
Chowdhury
,
T. T.
,
Bader
,
D. L.
,
Shelton
,
J. C.
, and
Lee
,
D. A.
, 2003, “
Temporal Regulation of Chondrocyte Metabolism in Agarose Constructs Subjected to Dynamic Compression
,”
Arch. Biochem. Biophys.
0003-9861,
417
(
1
), pp.
105
111
.
29.
Lima
,
E. G.
,
Bian
,
L.
,
Mauck
,
R. L.
,
Byers
,
B. A.
,
Tuan
,
R. S.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2006, “
The Effect of Applied Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured With TGF-Beta3
,”
IEEE Eng. Med. Biol. Soc.
,
1
, pp.
779
782
. 1617-7959
30.
Mauck
,
R. L.
,
Byers
,
B. A.
,
Yuan
,
X.
, and
Tuan
,
R. S.
, 2007, “
Regulation of Cartilaginous ECM Gene Transcription by Chondrocytes and MSCs in 3D Culture in Response to Dynamic Loading
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
(
1–2
), pp.
113
125
.
31.
Pingguan-Murphy
,
B.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Knight
,
M. M.
, 2005, “
Activation of Chondrocytes Calcium Signalling by Dynamic Compression is Independent of Number of Cycles
,”
Arch. Biochem. Biophys.
0003-9861,
444
(
1
), pp.
45
51
.
32.
Shelton
,
J. C.
,
Bader
,
D. L.
, and
Lee
,
D. A.
, 2003, “
Mechanical Conditioning Influences the Metabolic Response of Cell-Seeded Constructs
,”
Cells Tissues Organs
1422-6405,
175
(
3
), pp.
140
150
.
33.
Ma
,
P. X.
,
Schloo
,
B.
,
Mooney
,
D.
, and
Langer
,
R.
, 1995, “
Development of Biomechanical Properties and Morphogenesis of In Vitro Tissue Engineered Cartilage
,”
J. Biomed. Mater. Res.
0021-9304,
29
(
12
), pp.
1587
1595
.
34.
Waldman
,
S. D.
,
Spiteri
,
C. G.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
,
Hong
,
J.
, and
Kandel
,
R. A.
, 2003, “
Effect of Biomechanical Conditioning on Cartilaginous Tissue Formation In Vitro
,”
J. Bone Joint Surg. Am.
,
85-A
(
2
), pp.
101
105
. 0021-9355
35.
O'Brien
,
F. J.
,
Harley
,
B. A.
,
Waller
,
M. A.
,
Yannas
,
I. V.
,
Gibson
,
L. J.
, and
Prendergast
,
P. J.
, 2007, “
The Effect of Pore Size on Permeability and Cell Attachment in Collagen Scaffolds for Tissue Engineering
,”
Technol. Health Care
0928-7329,
15
(
1
), pp.
3
17
.
36.
Hoemann
,
C. D.
,
Sun
,
J.
,
McKee
,
M. D.
,
Chevrier
,
A.
,
Rossomacha
,
E.
,
Rivard
,
G. E.
,
Hurtig
,
M.
, and
Buschmann
,
M.
, 2007, “
Chitosan-Glycerol Phosphate/Blood Implants Elicit Hyaline Cartilage Repair Integrated With Porous Subchondral Bone in Microdrilled Rabbit Defects
,”
Osteoarthritis Cartilage
1063-4584,
15
(
1
), pp.
78
89
.
37.
Hunter
,
C. J.
,
Mouw
,
J. K.
, and
Levenston
,
M. E.
, 2004, “
Dynamic Compression of Chondrocyte-Seeded Fibrin Gels: Effects on Matrix Accumulation and Mechanical Stiffness
,”
Osteoarthritis Cartilage
1063-4584,
12
(
2
), pp.
117
130
.
38.
Démarteau
,
O.
,
Wendt
,
D.
,
Braccini
,
A.
,
Jakob
,
M.
,
Schäfer
,
D.
,
Heberer
,
M.
, and
Martin
,
I.
, 2003, “
Dynamic Compression of Cartilage Constructs Engineered From Expanded Human Articular Chondrocytes
,”
Biochem. Biophys. Res. Commun.
0006-291X,
310
(
2
), pp.
580
588
.
39.
Kisiday
,
J. D.
,
Jin
,
M.
,
DiMicco
,
M. A.
,
Kurz
,
B.
, and
Grodzinsky
,
A. J.
, 2004, “
Effects of Dynamic Compressive Loading on Chondrocyte Biosynthesis in Self-Assembling Peptide Scaffolds
,”
ASME J. Biomech.
,
37
(
5
), pp.
595
604
. 0021-9290
40.
Hung
,
C. T.
,
Mauck
,
R. L.
,
Wang
,
C. C.
,
Lima
,
E. G.
, and
Ateshian
,
G. A.
, 2004, “
A Paradigm for Functional Tissue Engineering of Articular Cartilage Via Applied Physiologic Deformational Loading
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
35
49
.
41.
Lima
,
E. G.
,
Bian
,
L.
,
Ng
,
K. W.
,
Mauck
,
R. L.
,
Byers
,
B. A.
,
Tuan
,
R. S.
, et al.
, 2007, “
The Beneficial Effect of Delayed Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured With TGF-Beta3
,”
Osteoarthritis Cartilage
1063-4584,
15
(
9
), pp.
1025
1033
.
You do not currently have access to this content.