Human embryonic stem cells (hESCs) possess an immense potential in a variety of regenerative applications. A firm understanding of hESC mechanics, on the single cell level, may provide great insight into the role of biophysical forces in the maintenance of cellular phenotype and elucidate mechanical cues promoting differentiation along various mesenchymal lineages. Moreover, cellular biomechanics can provide an additional tool for characterizing stem cells as they follow certain differentiation lineages, and thus may aid in identifying differentiated hESCs, which are most suitable for tissue engineering. This study examined the viscoelastic properties of single undifferentiated hESCs, chondrogenically differentiated hESC subpopulations, mesenchymal stem cells (MSCs), and articular chondrocytes (ACs). hESC chondrogenesis was induced using either transforming growth factor-β1(TGF-β1) or knock out serum replacer as differentiation agents, and the resulting cell populations were separated based on density. All cell groups were mechanically tested using unconfined creep cytocompression. Analyses of subpopulations from all differentiation regimens resulted in a spectrum of mechanical and morphological properties spanning the range of hESCs to MSCs to ACs. Density separation was further successful in isolating cellular subpopulations with distinct mechanical properties. The instantaneous and relaxed moduli of subpopulations from TGF-β1 differentiation regimen were statistically greater than those of undifferentiated hESCs. In addition, two subpopulations from the TGF-β1 group were identified, which were not statistically different from native articular chondrocytes in their instantaneous and relaxed moduli, as well as their apparent viscosity. Identification of a differentiated hESC subpopulation with similar mechanical properties as native chondrocytes may provide an excellent cell source for tissue engineering applications. These cells will need to withstand any mechanical stimulation regimen employed to augment the mechanical and biochemical characteristics of the neotissue. Density separation was effective at purifying distinct populations of cells. A differentiated hESC subpopulation was identified with both similar mechanical and morphological characteristics as ACs. Future research may utilize this cell source in cartilage regeneration efforts.

1.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1663
1673
.
2.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
, 1993, “
Mechanotransduction Across the Cell Surface and Through the Cytoskeleton
,”
Science
0036-8075,
260
(
5111
), pp.
1124
1127
.
3.
Titushkin
,
I.
, and
Cho
,
M.
, 2007, “
Modulation of Cellular Mechanics During Osteogenic Differentiation of Human Mesenchymal Stem Cells
,”
Biophys. J.
0006-3495,
93
(
10
), pp.
3693
3702
.
4.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2008, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
0021-9290,
41
(
2
), pp.
454
464
.
5.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
, 2006, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
1063-4584,
14
(
6
), pp.
571
579
.
6.
Sato
,
M.
,
Theret
,
D. P.
,
Wheeler
,
L. T.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
, 1990, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
3
), pp.
263
268
.
7.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2003, “
Creep Indentation of Single Cells
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
334
341
.
8.
Leipzig
,
N. D.
, and
Athanasiou
,
K. A.
, 2005, “
Unconfined Creep Compression of Chondrocytes
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
77
85
.
9.
Darling
,
E. M.
, and
Athanasiou
,
K. A.
, 2005, “
Rapid Phenotypic Changes in Passaged Articular Chondrocyte Subpopulations
,”
J. Orthop. Res.
0736-0266,
23
(
2
), pp.
425
32
.
10.
Mcbeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
, 2004, “
Cell Shape, Cytoskeletal Tension, and Rhoa Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
1534-5807,
6
(
4
), pp.
483
95
.
11.
Carter
,
D. R.
,
Beaupre
,
G. S.
,
Wong
,
M.
,
Smith
,
R. L.
,
Andriacchi
,
T. P.
, and
Schurman
,
D. J.
, 2004, “
The Mechanobiology of Articular Cartilage Development and Degeneration
,”
Clin. Orthop. Relat. Res.
0009-921X,
427
, pp.
S69
S77
.
12.
Schumann
,
D.
,
Kujat
,
R.
,
Nerlich
,
M.
, and
Angele
,
P.
, 2006, “
Mechanobiological Conditioning of Stem Cells for Cartilage Tissue Engineering
,”
Biomed. Mater. Eng.
0959-2989,
16
(
4
), pp.
S37
S52
.
13.
Terraciano
,
V.
,
Hwang
,
N.
,
Moroni
,
L.
,
Park
,
H. B.
,
Zhang
,
Z.
,
Mizrahi
,
J.
,
Seliktar
,
D.
, and
Elisseeff
,
J.
, 2007, “
Differential Response of Adult and Embryonic Mesenchymal Progenitor Cells to Mechanical Compression in Hydrogels
,”
Stem Cells
1066-5099,
25
(
11
), pp.
2730
2738
.
14.
Wu
,
C. C.
,
Chao
,
Y. C.
,
Chen
,
C. N.
,
Chien
,
S.
,
Chen
,
Y. C.
,
Chien
,
C. C.
,
Chiu
,
J. J.
, and
Linju Yen
,
B.
, 2008, “
Synergism of Biochemical and Mechanical Stimuli in the Differentiation of Human Placenta-Derived Multipotent Cells Into Endothelial Cells
,”
J. Biomech.
0021-9290,
41
(
4
), pp.
813
821
.
15.
Koay
,
E. J.
,
Hoben
,
G. M.
, and
Athanasiou
,
K. A.
, 2007, “
Tissue Engineering With Chondrogenically Differentiated Human Embryonic Stem Cells
,”
Stem Cells
1066-5099,
25
(
9
), pp.
2183
2190
.
16.
Hoben
,
G. M.
,
Koay
,
E. J.
, and
Athanasiou
,
K. A.
, 2008, “
Fibrochondrogenesis in Two Embryonic Stem Cell Lines: Effects of Differentiation Timelines
,”
Stem Cells
1066-5099,
26
(
2
), pp.
422
430
.
17.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2007, “
Dynamic Compression of Single Cells
,”
Osteoarthritis Cartilage
1063-4584,
15
(
3
), pp.
328
334
.
18.
Leipzig
,
N. D.
, and
Athanasiou
,
K. A.
, 2008, “
Static Compression of Single Chondrocytes Catabolically Modifies Single-Cell Gene Expression
,”
Biophys. J.
0006-3495,
94
(
6
), pp.
2412
2422
.
19.
Koay
,
E. J.
,
Ofek
,
G.
, and
Athanasiou
,
K. A.
, 2008, “
Effects of TGF-β1 and IGF-I on the Compressibility, Biomechanics, and Strain-Dependent Recovery Behavior of Single Chondrocytes
,”
J. Biomech.
0021-9290,
41
(
5
), pp.
1044
52
.
20.
Levenberg
,
S.
,
Huang
,
N. F.
,
Lavik
,
E.
,
Rogers
,
A. B.
,
Itskovitz-Eldor
,
J.
, and
Langer
,
R.
, 2003, “
Differentiation of Human Embryonic Stem Cells on Three-Dimensional Polymer Scaffolds
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
22
), pp.
12741
12746
.
21.
Toh
,
W. S.
,
Yang
,
Z.
,
Liu
,
H.
,
Heng
,
B. C.
,
Lee
,
E. H.
, and
Cao
,
T.
, 2007, “
Effects of Culture Conditions and Bone Morphogenetic Protein 2 on Extent of Chondrogenesis From Human Embryonic Stem Cells
,”
Stem Cells
1066-5099,
25
(
4
), pp.
950
960
.
22.
Hwang
,
N. S.
,
Varghese
,
S.
,
Zhang
,
Z.
, and
Elisseeff
,
J.
, 2006, “
Chondrogenic Differentiation of Human Embryonic Stem Cell-Derived Cells in Arginine-Glycine-Aspartate-Modified Hydrogels
,”
Tissue Eng.
1076-3279,
12
(
9
), pp.
2695
2706
.
23.
Hwang
,
N. S.
,
Kim
,
M. S.
,
Sampattavanich
,
S.
,
Baek
,
J. H.
,
Zhang
,
Z.
, and
Elisseeff
,
J.
, 2006, “
Effects of Three-Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells
,”
Stem Cells
1066-5099,
24
(
2
), pp.
284
91
.
24.
Koay
,
E. J.
, and
Athanasiou
,
K. A.
, “Development of Serum-Free, Chemically Defined Conditions for Human Embryonic Stem Cell-Derived Fibrochondrogenesis,” Tissue Eng. Part A (to be published).
25.
Itskovitz-Eldor
,
J.
,
Schuldiner
,
M.
,
Karsenti
,
D.
,
Eden
,
A.
,
Yanuka
,
O.
,
Amit
,
M.
,
Soreq
,
H.
, and
Benvenisty
,
N.
, 2000, “
Differentiation of Human Embryonic Stem Cells Into Embryoid Bodies Compromising the Three Embryonic Germ Layers
,”
Mol. Med.
1076-1551,
6
(
2
), pp.
88
95
.
26.
Pawlowski
,
A.
,
Makower
,
A. M.
,
Madsen
,
K.
,
Wroblewski
,
J.
, and
Friberg
,
U.
, 1986, “
Cell Fractions From Rat Rib Growth Cartilage. Biochemical Characterization of Matrix Molecules
,”
Exp. Cell Res.
0014-4827,
164
(
1
), pp.
211
22
.
27.
Min
,
B. H.
,
Kim
,
H. J.
,
Lim
,
H.
, and
Park
,
S. R.
, 2002, “
Characterization of Subpopulated Articular Chondrocytes Separated by Percoll Density Gradient
,”
In Vitro Cell. Dev. Biol.: Anim.
1071-2690,
38
(
1
), pp.
35
40
.
28.
Wong
,
M.
, and
Tuan
,
R. S.
, 1995, “
Interactive Cellular Modulation of Chondrogenic Differentiation In Vitro by Subpopulations of Chick Embryonic Calvarial Cells
,”
Dev. Biol.
0012-1606,
167
(
1
), pp.
130
147
.
29.
Zhang
,
S. C.
,
Wernig
,
M.
,
Duncan
,
I. D.
,
Brustle
,
O.
, and
Thomson
,
J. A.
, 2001, “
In Vitro Differentiation of Transplantable Neural Precursors From Human Embryonic Stem Cells
,”
Nat. Biotechnol.
1087-0156,
19
(
12
), pp.
1129
1133
.
30.
Patella
,
V.
,
Marino
,
I.
,
Lamparter
,
B.
,
Arbustini
,
E.
,
Adt
,
M.
, and
Marone
,
G.
, 1995, “
Human Heart Mast Cells. Isolation, Purification, Ultrastructure, and Immunologic Characterization
,”
J. Immunol.
0022-1767,
154
(
6
), pp.
2855
2865
.
31.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2006, “
Biomechanics of Single Zonal Chondrocytes
,”
J. Biomech.
0021-9290,
39
(
9
), pp.
1595
1602
.
32.
Leipzig
,
N. D.
,
Eleswarapu
,
S. V.
, and
Athanasiou
,
K. A.
, 2006, “
The Effects of TGF-β1 and IGF-I on the Biomechanics and Cytoskeleton of Single Chondrocytes
,”
Osteoarthritis Cartilage
1063-4584,
14
(
12
), pp.
1227
1236
.
33.
Rosenberg
,
L.
, 1971, “
Chemical Basis for the Histological Use of Safranin O in the Study of Articular Cartilage
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
53
(
1
), pp.
69
82
.
34.
Angele
,
P.
,
Yoo
,
J. U.
,
Smith
,
C.
,
Mansour
,
J.
,
Jepsen
,
K. J.
,
Nerlich
,
M.
, and
Johnstone
,
B.
, 2003, “
Cyclic Hydrostatic Pressure Enhances the Chondrogenic Phenotype of Human Mesenchymal Progenitor Cells Differentiated In Vitro
,”
J. Orthop. Res.
0736-0266,
21
(
3
), pp.
451
457
.
35.
Taqvi
,
S.
, and
Roy
,
K.
, 2006, “
Influence of Scaffold Physical Properties and Stromal Cell Coculture on Hematopoietic Differentiation of Mouse Embryonic Stem Cells
,”
Biomaterials
0142-9612,
27
(
36
), pp.
6024
6031
.
36.
Blain
,
E. J.
,
Gilbert
,
S. J.
,
Hayes
,
A. J.
, and
Duance
,
V. C.
, 2006, “
Disassembly of the Vimentin Cytoskeleton Disrupts Articular Cartilage Chondrocyte Homeostasis
,”
Matrix Biol.
0945-053X,
25
(
7
), pp.
398
408
.
37.
Brown
,
P. D.
, and
Benya
,
P. D.
, 1988, “
Alterations in Chondrocyte Cytoskeletal Architecture During Phenotypic Modulation by Retinoic Acid and Dihydrocytochalasin B-Induced Reexpression
,”
J. Cell Biol.
0021-9525,
106
(
1
), pp.
171
179
.
38.
Loty
,
S.
,
Forest
,
N.
,
Boulekbache
,
H.
, and
Sautier
,
J. M.
, 1995, “
Cytochalasin D Induces Changes in Cell Shape and Promotes In Vitro Chondrogenesis: A Morphological Study
,”
Biol. Cell
0248-4900,
83
(
2–3
), pp.
149
161
.
39.
Vinall
,
R. L.
,
Lo
,
S. H.
, and
Reddi
,
A. H.
, 2002, “
Regulation of Articular Chondrocyte Phenotype by Bone Morphogenetic Protein 7, Interleukin 1, and Cellular Context is Dependent on the Cytoskeleton
,”
Exp. Cell Res.
0014-4827,
272
(
1
), pp.
32
44
.
40.
Trickey
,
W. R.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2004, “
The Role of the Cytoskeleton in the Viscoelastic Properties of Human Articular Chondrocytes
,”
J. Orthop. Res.
0736-0266,
22
(
1
), pp.
131
139
.
41.
Mow
,
V. C.
, and
Ratcliffe
,
A.
, 1997, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics
,
Lippincott-Raven
,
Philadelphia, PA
.
42.
Adams
,
J. D.
,
Kim
,
U.
, and
Soh
,
H. T.
, 2008, “
Multitarget Magnetic Activated Cell Sorter
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
105
(
47
), pp.
18165
18170
.
43.
Fickert
,
S.
,
Fiedler
,
J.
, and
Brenner
,
R. E.
, 2004, “
Identification of Subpopulations With Characteristics of Mesenchymal Progenitor Cells From Human Osteoarthritic Cartilage Using Triple Staining for Cell Surface Markers
,”
Arthritis Res. Ther.
1478-6354,
6
(
5
), pp.
R422
R432
.
44.
Aufderheide
,
A. C.
, and
Athanasiou
,
K. A.
, 2004, “
Mechanical Stimulation Toward Tissue Engineering of the Knee Meniscus
,”
Ann. Biomed. Eng.
0090-6964,
32
(
8
), pp.
1163
1176
.
45.
Freeman
,
P. M.
,
Natarajan
,
R. N.
,
Kimura
,
J. H.
, and
Andriacchi
,
T. P.
, 1994, “
Chondrocyte Cells Respond Mechanically to Compressive Loads
,”
J. Orthop. Res.
0736-0266,
12
(
3
), pp.
311
320
.
46.
Alexopoulos
,
L. G.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
The Biomechanical Role of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
Acta Biomater.
1742-7061,
1
(
3
), pp.
317
325
.
47.
D’andrea
,
P.
,
Calabrese
,
A.
,
Capozzi
,
I.
,
Grandolfo
,
M.
,
Tonon
,
R.
, and
Vittur
,
F.
, 2000, “
Intercellular Ca2+Waves in Mechanically Stimulated Articular Chondrocytes
,”
Biorheology
0006-355X,
37
(
1–2
), pp.
75
83
.
48.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
, 2000, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
0736-0266,
18
(
6
), pp.
891
898
.
You do not currently have access to this content.